Advertisement

Contemporary Fluid Management in Cardiac Anesthesia

Published:October 14, 2010DOI:https://doi.org/10.1053/j.jvca.2010.07.020
      THE PRESCRIPTION OF perioperative fluids has been a persistent controversy among anesthesiologists, surgeons, and intensivists. Interestingly, disagreements within each specialty as to the appropriate types and amounts of fluids required are just as intense as that seen among the specialties. The challenge in navigating these waters is demanding because the safe harbor of optimal fluid administration is bounded by hypovolemia and end-organ hypoperfusion (resulting from inadequate fluids) and congestive heart failure and the negative effects of edema formation on respiration and wound healing (resulting from excessive fluids). The clinician typically is equipped with limited useful monitoring data and no consensus guidelines on the optimal fluid strategy. In effect, clinicians are navigating through rough waters with neither a compass nor a chart. Not surprisingly, outcomes have been less than satisfactory because the need for rescue therapy for the hypovolemic shock patient and prolonged mechanical ventilation and congestive heart failure remain all-too-frequent events in the operating room and the intensive care unit (ICU).

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiothoracic and Vascular Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moore F.D.
        • Steenburg R.W.
        • Ball M.R.
        • et al.
        Studies in surgical endocrinology.
        Ann Surg. 1955; 141: 145-174
        • Moyer C.A.
        Acute temporary changes in renal function associated with major surgical procedures.
        Surgery. 1950; 27: 198-207
        • Shires T.
        • Williams J.
        • Brown F.
        Acute change in extracellular fluids associated with major surgical procedures.
        Ann Surg. 1961; 154: 803-810
        • Roberts J.P.
        • Roberts J.D.
        • Skinner C.
        • et al.
        Extracellular fluid deficit following operation and its correction with Ringer's lactate.
        Ann Surg. 1985; 202: 1-8
        • Jenkins M.T.
        • Giesecke A.H.
        • Johnson E.R.
        The postoperative patient and his fluid and electrolyte requirements.
        Br J Anaesth. 1975; 47: 143-150
        • Campbell I.T.
        • Baxter J.N.
        • Tweedie I.E.
        • et al.
        IV fluids during surgery.
        Br J Anaesth. 1990; 65: 726-729
        • Brandstrup B.
        Fluid therapy for the surgical patient.
        Best Pract Res Clin Anaesthesiol. 2006; 20: 265-283
        • Brandstrup B.
        • Tønnesen H.
        • Beier-Holgersen R.
        • et al.
        Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: A randomized assessor-blinded multicenter trial.
        Ann Surg. 2003; 238: 641-648
        • Holte K.
        • Klarskov B.
        • Christensen D.S.
        • et al.
        Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: A randomized, double-blind study.
        Ann Surg. 2004; 240: 892-899
        • MacKay G.
        • Fearon K.
        • McConnachie A.
        • et al.
        Randomized clinical trial of the effect of postoperative intravenous fluid restriction on recovery after elective colorectal surgery.
        Br J Surg. 2006; 93: 1469-1474
        • Holte K.
        • Foss N.B.
        • Andersen J.
        • et al.
        Liberal or restrictive fluid administration in fast-track colonic surgery: A randomized, double-blind study.
        Br J Anaesth. 2007; 99: 500-508
        • Bundgaard-Nielsen M.
        • Secher N.H.
        • Kehlet H.
        ‘Liberal’ vs. ‘restrictive’ perioperative fluid therapy—A critical assessment of the evidence.
        Acta Anaesthesiol Scand. 2009; 53: 843-851
        • Shoemaker W.C.
        • Appel P.L.
        • Kram H.B.
        • et al.
        Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients.
        Chest. 1988; 94: 1176-1186
        • Pearse R.
        • Dawson D.
        • Fawcett J.
        • et al.
        Changes in central venous saturation after major surgery, and association with outcome.
        Crit Care. 2005; 9: R694-R699
        • Pearse R.
        • Dawson D.
        • Fawcett J.
        • et al.
        Early goal-directed therapy after major surgery reduces complications and duration of hospital stay.
        Crit Care. 2005; 9: R687-R693
        • Giglio M.T.
        • Marucci M.
        • Testini M.
        • et al.
        Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: A meta-analysis of randomized controlled trials.
        Br J Anaesth. 2009; 103: 637-646
        • Polonen P.
        • Ruokonen E.
        • Hippelainen M.
        • et al.
        A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients.
        Anesth Analg. 2000; 90: 1052-1059
        • Sander M.
        • Spies C.D.
        • Foer A.
        • et al.
        Agreement of central venous saturation and mixed venous saturation in cardiac surgery patients.
        Intensive Care Med. 2007; 33: 1719-1725
        • Rivers E.
        • Nguyen B.
        • Havstad S.
        • et al.
        Early goal-directed therapy in the treatment of severe sepsis and septic shock.
        N Engl J Med. 2001; 345: 1368-1377
        • Kapoor P.M.
        • Kakani M.
        • Chowdhury U.
        • et al.
        Early goal-directed therapy in moderate to high-risk cardiac surgery patients.
        Ann Card Anaesth. 2008; 11: 27-34
        • McKendry M.
        • McGloin H.
        • Saberi D.
        • et al.
        Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery.
        BMJ. 2004; 329: 258
        • Goepfert M.S.G.
        • Reuter D.A.
        • Akyol D.
        • et al.
        Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients.
        Intensive Care Med. 2007; 33: 96-103
        • Smetkin A.A.
        • Kirov M.Y.
        • Kuzkov V.V.
        • et al.
        Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery.
        Acta Anaesthesiol Scand. 2009; 53: 505-514
        • Grebe D.
        • Sander M.
        • von Heymann C.
        • et al.
        [Fluid therapy—Pathophysiological principles as well as intra- and perioperative monitoring].
        Anasthesiol Intensivmed Notfallmed Schmerzther. 2006; 41: 392-398
        • Grocott M.P.
        • Mythen M.G.
        • Gan T.J.
        Perioperative fluid management and clinical outcomes in adults.
        Anesth Analg. 2005; 100: 1093-1106
        • Dellinger R.P.
        • Levy M.M.
        • Carlet J.M.
        • et al.
        Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008.
        Crit Care Med. 2008; 36: 296-327
        • Kastrup M.
        • Markewitz A.
        • Spies C.
        • et al.
        Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: Results from a postal survey.
        Acta Anaesthesiol Scand. 2007; 51: 347-358
        • Marik P.E.
        • Baram M.
        • Vahid B.
        Does central venous pressure predict fluid responsiveness?.
        Chest. 2008; 134: 172-178
        • Bennett-Guerrero E.
        • Kahn R.A.
        • Moskowitz D.M.
        • et al.
        Comparison of arterial systolic pressure variation with other clinical parameters to predict the response to fluid challenges during cardiac surgery.
        Mt Sinai J Med. 2002; 69: 96-100
        • Wiesenack C.
        • Prasser C.
        • Keyl C.
        • et al.
        Assessment of intrathoracic blood volume as an indicator of cardiac preload: Single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter.
        J Cardiothorac Vasc Anesth. 2001; 15: 584-588
        • Brock H.
        • Gabriel C.
        • Bibl D.
        • et al.
        Monitoring intravascular volumes for postoperative volume therapy.
        Eur J Anaesthesiol. 2002; 19: 288-294
        • Sander M.
        • Spies C.D.
        • Berger K.
        • et al.
        Prediction of volume response under open-chest conditions during coronary artery bypass surgery.
        Crit Care. 2007; 11: R121
        • Wittkowski U.
        • Spies C.
        • Sander M.
        • et al.
        [Haemodynamic monitoring in the perioperative phase. Available systems, practical application and clinical data].
        Der Anaesthesist. 2009; 58 (780-766): 764-778
        • Michard F.
        • Alaya S.
        • Zarka V.
        • et al.
        Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock.
        Chest. 2003; 124: 1900-1908
        • Hofer C.K.
        • Furrer L.
        • Matter-Ensner S.
        • et al.
        Volumetric preload measurement by thermodilution: A comparison with transoesophageal echocardiography.
        Br J Anaesth. 2005; 94: 748-755
        • Reuter D.A.
        • Felbinger T.W.
        • Moerstedt K.
        • et al.
        Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery.
        J Cardiothorac Vasc Anesth. 2002; 16: 191-195
        • Reuter D.A.
        • Felbinger T.W.
        • Kilger E.
        • et al.
        Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations.
        Br J Anaesth. 2002; 88: 124-126
        • Sakka S.G.
        • Becher L.
        • Kozieras J.
        • et al.
        Effects of changes in blood pressure and airway pressures on parameters of fluid responsiveness.
        Eur J Anaesthesiol. 2009; 26: 322-327
        • Breukers R.M.
        • de Wilde R.B.P.
        • van den Berg P.C.M.
        • et al.
        Assessing fluid responses after coronary surgery: Role of mathematical coupling of global end-diastolic volume to cardiac output measured by transpulmonary thermodilution.
        Eur J Anaesthesiol. 2009; 26: 954-960
        • Breukers R.M.
        • Trof R.J.
        • de Wilde R.B.P.
        • et al.
        Relative value of pressures and volumes in assessing fluid responsiveness after valvular and coronary artery surgery.
        Eur J Cardiothorac Surg. 2009; 35: 62-68
        • Goedje O.
        • Seebauer T.
        • Peyerl M.
        • et al.
        Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation.
        Chest. 2000; 118: 775-781
        • Michard F.
        • Teboul J.-L.
        Predicting fluid responsiveness in ICU patients: A critical analysis of the evidence.
        Chest. 2002; 121: 2000-2008
        • Wiesenack C.
        • Fiegl C.
        • Keyser A.
        • et al.
        Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients.
        Eur J Anaesthesiol. 2005; 22: 658-665
        • Wiesenack C.
        • Prasser C.
        • Rodig G.
        • et al.
        Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients.
        Anesth.Analg. 2003; 96: 1254-1257
        • Hofer C.K.
        • Müller S.M.
        • Furrer L.
        • et al.
        Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting.
        Chest. 2005; 128: 848-854
        • Belloni L.
        • Pisano A.
        • Natale A.
        • et al.
        Assessment of fluid-responsiveness parameters for off-pump coronary artery bypass surgery: A comparison among LiDCO, transesophageal echochardiography, and pulmonary artery catheter.
        J Cardiothorac Vasc Anesth. 2008; 22: 243-248
        • Auler Jr, J.O.
        • Galas F.
        • Hajjar L.
        • et al.
        Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery.
        Anesth Analg. 2008; 106: 1201-1206
        • Bendjelid K.
        • Suter P.M.
        • Romand J.A.
        The respiratory change in preejection period: A new method to predict fluid responsiveness.
        J Appl Physiol. 2004; 96: 337-342
        • Reuter D.A.
        • Bayerlein J.
        • Goepfert M.S.
        • et al.
        Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients.
        Intensive Care Med. 2003; 29: 476-480
        • de Waal E.E.
        • Rex S.
        • Kruitwagen C.L.
        • et al.
        Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions.
        Crit Care Med. 2009; 37: 510-515
        • Rex S.
        • Schalte G.
        • Schroth S.
        • et al.
        Limitations of arterial pulse pressure variation and left ventricular stroke volume variation in estimating cardiac pre-load during open heart surgery.
        Acta Anaesthesiol Scand. 2007; 51: 1258-1267
        • Reuter D.A.
        • Goresch T.
        • Goepfert M.S.
        • et al.
        Effects of mid-line thoracotomy on the interaction between mechanical ventilation and cardiac filling during cardiac surgery.
        Br J Anaesth. 2004; 92: 808-813
        • Reuter D.A.
        • Goepfert M.S.
        • Goresch T.
        • et al.
        Assessing fluid responsiveness during open chest conditions.
        Br J Anaesth. 2005; 94: 318-323
        • Teboul J.L.
        Meaning of pulse pressure variation during cardiac surgery: Everything is open.
        Crit Care Med. 2009; 37: 757-758
        • Carl M.
        • Alms A.
        • Braun J.
        • et al.
        Die intensivmedizinische Versorgung herzchirurgischer Patienten: Hämodynamisches Monitoring und Herz-Kreislauf-Therapie S3-Leitlinie der Deutschen Gesellschaft für Thorax-, Herz- und Gefäbchirurgie (DGTHG) und der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI).
        Thorac Cardiovasc Surg. 2007; 55: 130-148
        • Clements F.M.
        • Harpole D.H.
        • Quill T.
        • et al.
        Estimation of left ventricular volume and ejection fraction by two-dimensional transoesophageal echocardiography: Comparison of short axis imaging and simultaneous radionuclide angiography.
        Br J Anaesth. 1990; 64: 331-336
        • Cheitlin M.D.
        • Armstrong W.F.
        • Aurigemma G.P.
        • et al.
        ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: Summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography).
        Circulation. 2003; 108: 1146-1162
        • Zink W.
        • Nöll J.
        • Rauch H.
        • et al.
        Continuous assessment of right ventricular ejection fraction: New pulmonary artery catheter versus transoesophageal echocardiography.
        Anaesthesia. 2004; 59: 1126-1132
        • Cheung A.T.
        • Savino J.S.
        • Weiss S.J.
        • et al.
        Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function.
        Anesthesiology. 1994; 81: 376-387
        • Tousignant C.P.
        • Walsh F.
        • Mazer C.D.
        The use of transesophageal echocardiography for preload assessment in critically ill patients.
        Anesth Analg. 2000; 90: 351-355
        • Buhre W.
        • Buhre K.
        • Kazmaier S.
        • et al.
        Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography.
        Eur J Anaesthesiol. 2001; 18: 662-667
        • Hofer C.K.
        • Ganter M.T.
        • Matter-Ensner S.
        • et al.
        Volumetric assessment of left heart preload by thermodilution: comparing the PiCCO-VoLEF system with transoesophageal echocardiography.
        Anaesthesia. 2006; 61: 316-321
        • DiCorte C.J.
        • Latham P.
        • Greilich P.E.
        • et al.
        Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations.
        Ann Thorac Surg. 2000; 69: 1782-1786
        • Wiesenack C.
        • Fiegl C.
        • Keyser A.
        • et al.
        Continuously assessed right ventricular end-diastolic volume as a marker of cardiac preload and fluid responsiveness in mechanically ventilated cardiac surgical patients.
        Critical Care. 2005; 9: R226-R233
        • Brunkhorst F.M.
        • Engel C.
        • Bloos F.
        • et al.
        Intensive insulin therapy and pentastarch resuscitation in severe sepsis.
        N Engl J Med. 2008; 358: 125-139
        • Mahmood A.
        • Gosling P.
        • Barclay R.
        • et al.
        Splanchnic microcirculation protection by hydroxyethyl starches during abdominal aortic aneurysm surgery.
        Eur J Vasc Endovasc Surg. 2009; 37: 319-325
        • Lorenz W.
        • Doenicke A.
        • Messmer K.
        • et al.
        Histamine release in human subjects by modified gelatin (Haemaccel) and dextran: An explanation for anaphylactoid reactions observed under clinical conditions?.
        Br J Anaesth. 1976; 48: 151-165
        • Bailey A.G.
        • McNaull P.P.
        • Jooste E.
        • et al.
        Perioperative crystalloid and colloid fluid management in children: Where are we and how did we get here?.
        Anesth Analg. 2010; 110: 375-390
        • Perel P.
        • Roberts I.
        Colloids versus crystalloids for fluid resuscitation in critically ill patients.
        Cochrane Database Syst Rev. 2007; 4 (CD000567)
        • Verheij J.
        • van Lingen A.
        • Beishuizen A.
        • et al.
        Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery.
        Intensive Care Med. 2006; 32: 1030-1038
        • Ernest D.
        • Belzberg A.S.
        • Dodek P.M.
        Distribution of normal saline and 5% albumin infusions in cardiac surgical patients.
        Crit Care Med. 2001; 29: 2299-2302
        • Byrick R.J.
        • Kay C.
        • Noble W.H.
        Extravascular lung water accumulation in patients following coronary artery surgery.
        Can Anaesth Soc J. 1977; 24: 332-345
        • Sivak E.D.
        • Starr N.J.
        • Graves J.W.
        • et al.
        Extravascular lung water values in patients undergoing coronary artery bypass surgery.
        Crit Care Med. 1982; 10: 593-596
        • Karanko M.S.
        • Klossner J.A.
        • Laaksonen V.O.
        Restoration of volume by crystalloid versus colloid after coronary artery bypass: Hemodynamics, lung water, oxygenation, and outcome.
        Crit Care Med. 1987; 15: 559-566
        • Verheij J.
        • van Lingen A.
        • Raijmakers P.G.H.M.
        • et al.
        Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery.
        Br J Anaesth. 2006; 96: 21-30
        • Jarvela K.
        • Koskinen M.
        • Kaukinen S.
        • et al.
        Effects of hypertonic saline (7.5%) on extracellular fluid volumes compared with normal saline (0.9%) and 6% hydroxyethyl starch after aortocoronary bypass graft surgery.
        J Cardiothorac Vasc Anesth. 2001; 15: 210-215
        • Westphal M.
        • James M.F.
        • Kozek-Langenecker S.
        • et al.
        Hydroxyethyl starches: Different products—Different effects.
        Anesthesiology. 2009; 111: 187-202
        • Van der Linden P.J.
        • De Hert S.G.
        • Daper A.
        • et al.
        3.5% urea-linked gelatin is as effective as 6% HES 200/0.5 for volume management in cardiac surgery patients.
        Can J Anaesth. 2004; 51: 236-241
        • Levi M.
        • Jonge E.
        Clinical relevance of the effects of plasma expanders on coagulation.
        Semin Thromb Hemost. 2007; 33: 810-815
        • Boks R.H.
        • Wijers M.J.
        • Hofland J.
        • et al.
        Low molecular starch versus gelatin plasma expander during CPB: Does it make a difference?.
        Perfusion. 2007; 22: 333-337
        • Van der Linden P.J.
        • De Hert S.G.
        • Deraedt D.
        • et al.
        Hydroxyethyl starch 130/0.4 versus modified fluid gelatin for volume expansion in cardiac surgery patients: The effects on perioperative bleeding and transfusion needs.
        Anesth Analg. 2005; 101: 629-634
        • Ooi J.S.
        • Ramzisham A.R.
        • Zamrin M.D.
        Is 6% hydroxyethyl starch 130/0.4 safe in coronary artery bypass graft surgery?.
        Asian Cardiovasc Thorac Ann. 2009; 17: 368-372
        • Kasper S.M.
        • Meinert P.
        • Kampe S.
        • et al.
        Large-dose hydroxyethyl starch 130/0.4 does not increase blood loss and transfusion requirements in coronary artery bypass surgery compared with hydroxyethyl starch 200/0.5 at recommended doses.
        Anesthesiology. 2003; 99: 42-47
        • Niemi T.T.
        • Suojaranta-Ylinen R.T.
        • Kukkonen S.I.
        • et al.
        Gelatin and hydroxyethyl starch, but not albumin, impair hemostasis after cardiac surgery.
        Anesth Analg. 2006; 102: 998-1006
        • Schramko A.A.
        • Suojaranta-Ylinen R.T.
        • Kuitunen A.H.
        • et al.
        Rapidly degradable hydroxyethyl starch solutions impair blood coagulation after cardiac surgery: A prospective randomized trial.
        Anesth Analg. 2009; 108: 30-36
        • Mahmood A.
        • Gosling P.
        • Vohra R.K.
        Randomized clinical trial comparing the effects on renal function of hydroxyethyl starch or gelatin during aortic aneurysm surgery.
        Br J Surg. 2007; 94: 427-433
        • Hartog C.
        • Reinhart K.
        CONTRA: Hydroxyethyl starch solutions are unsafe in critically ill patients.
        Intensive Care Med. 2009; 35: 1337-1342
        • Schortgen F.
        • Lacherade J.C.
        • Bruneel F.
        • et al.
        Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study.
        Lancet. 2001; 357: 911-916
        • McIntyre L.A.
        • Fergusson D.
        • Cook D.J.
        • et al.
        Fluid resuscitation in the management of early septic shock (FINESS): A randomized controlled feasibility trial.
        Can J Anaesth. 2008; 55: 819-826
        • Sirvinskas E.
        • Sneider E.
        • Svagzdiene M.
        • et al.
        Hypertonic hydroxyethyl starch solution for hypovolaemia correction following heart surgery.
        Perfusion. 2007; 22: 121-127

      Linked Article