Advertisement

Noninvasive Cardiac Output Monitors: A State-of the-Art Review

      DESPITE IMPROVEMENTS in resuscitation and supportive care, progressive organ dysfunction occurs in a large proportion of patients with acute, life-threatening illnesses and those undergoing major surgery.
      • Sakr Y.
      • Dubois M.J.
      • De Backer D.
      • et al.
      Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock.
      • Dewar D.
      • Moore F.A.
      • Moore E.E.
      • et al.
      Postinjury multiple organ failure.
      • Cohn S.M.
      • Nathens A.B.
      • Moore F.A.
      • et al.
      Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation.
      • Patila T.
      • Kukkonen S.
      • Vento A.
      • et al.
      Relation of the sequential organ failure assessment score to morbidity and mortality after cardiac surgery.
      • Lobo S.M.
      • Rezende E.
      • Knibel M.F.
      • et al.
      Early determinants of death due to multiple organ failure after noncardiac surgery in high-risk patients.
      Recent data suggest that early aggressive resuscitation of critically ill patients may limit and/or reverse tissue hypoxia and progression to organ failure and improve outcome.
      • Shapiro N.I.
      • Howell M.D.
      • Talmor D.
      • et al.
      Implementation and outcomes of the multiple urgent sepsis therapies (MUST) protocol.
      In a landmark study, Rivers et al
      • Rivers E.
      • Nguyen B.
      • Havstad S.
      • et al.
      Early goal-directed therapy in the treatment of severe sepsis and septic shock.
      showed that a protocol of early goal-directed therapy reduces organ failure and improves survival in patients with severe sepsis and septic shock. Similarly, optimization of cardiac output (CO) in patients undergoing major surgery has been shown to reduce postoperative complications and the length of stay.
      • Lopes M.R.
      • Oliveira M.A.
      • Pereira V.O.
      • et al.
      Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: A pilot randomized controlled trial.
      • Polonen P.
      • Ruokonen E.
      • Hippelainen M.
      • et al.
      A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients.
      • Gan T.J.
      • Soppitt A.
      • Maroof M.
      • et al.
      Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery.
      • Wakeling H.G.
      • McFall M.R.
      • Jenkins C.S.
      • et al.
      Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery.
      • Noblett S.E.
      • Snowden C.P.
      • Shenton B.K.
      • et al.
      Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection.
      • Hamilton M.A.
      • Cecconi M.
      • Rhodes A.
      A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients.
      By contrast, excessive fluid resuscitation has been associated with increased complications, increased lengths of intensive care unit and hospital stay, and increased mortality.
      • Boyd J.H.
      • Forbes J.
      • Nakada T.
      • et al.
      Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure increase mortality.
      • Maitland K.
      • Kiguli S.
      • Opoka R.O.
      • et al.
      Mortality after fluid bolus in African children with severe infection.
      • de-Madaria E.
      • Soler-Sala G.
      • Sanchez-Paya J.
      • et al.
      Influence of fluid therapy on the prognosis of acute pancreatitis: A prospective cohort study.
      • Rosenberg A.L.
      • Dechert R.E.
      • Park P.K.
      • et al.
      Review of a large clinical series: Association of cumulative fluid balance on outcome in acute lung injury: A retrospective review of the ARDSnet tidal volume study cohort.
      These data suggest that fluid resuscitation should be titrated closely to minimize the risks of over- or under-resuscitation.
      • Bundgaard-Nielsen M.
      • Secher N.H.
      • Kehlet H.
      “Liberal” versus “restrictive” perioperative fluid therapy—A critical assessment of the evidence.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiothoracic and Vascular Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sakr Y.
        • Dubois M.J.
        • De Backer D.
        • et al.
        Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock.
        Crit Care Med. 2004; 32: 1825-1831
        • Dewar D.
        • Moore F.A.
        • Moore E.E.
        • et al.
        Postinjury multiple organ failure.
        Injury. 2009; 40: 912-918
        • Cohn S.M.
        • Nathens A.B.
        • Moore F.A.
        • et al.
        Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation.
        J Trauma. 2007; 62: 44-55
        • Patila T.
        • Kukkonen S.
        • Vento A.
        • et al.
        Relation of the sequential organ failure assessment score to morbidity and mortality after cardiac surgery.
        Ann Thorac Surg. 2006; 82: 2072-2078
        • Lobo S.M.
        • Rezende E.
        • Knibel M.F.
        • et al.
        Early determinants of death due to multiple organ failure after noncardiac surgery in high-risk patients.
        Anesth Analg. 2011; 112: 877-883
        • Shapiro N.I.
        • Howell M.D.
        • Talmor D.
        • et al.
        Implementation and outcomes of the multiple urgent sepsis therapies (MUST) protocol.
        Crit Care Med. 2006; 34: 1025-1032
        • Rivers E.
        • Nguyen B.
        • Havstad S.
        • et al.
        Early goal-directed therapy in the treatment of severe sepsis and septic shock.
        N Engl J Med. 2001; 345: 1368-1377
        • Lopes M.R.
        • Oliveira M.A.
        • Pereira V.O.
        • et al.
        Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: A pilot randomized controlled trial.
        Crit Care. 2007; 11: R100
        • Polonen P.
        • Ruokonen E.
        • Hippelainen M.
        • et al.
        A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients.
        Anesth Analg. 2000; 90: 1052-1059
        • Gan T.J.
        • Soppitt A.
        • Maroof M.
        • et al.
        Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery.
        Anesthesiology. 2002; 97: 820-826
        • Wakeling H.G.
        • McFall M.R.
        • Jenkins C.S.
        • et al.
        Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery.
        Br J Anaesth. 2005; 95: 634-642
        • Noblett S.E.
        • Snowden C.P.
        • Shenton B.K.
        • et al.
        Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection.
        Br J Surg. 2006; 93: 1069-1076
        • Hamilton M.A.
        • Cecconi M.
        • Rhodes A.
        A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients.
        Anesth Analg. 2011; 112: 1392-1402
        • Boyd J.H.
        • Forbes J.
        • Nakada T.
        • et al.
        Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure increase mortality.
        Crit Care Med. 2011; 39: 259-265
        • Maitland K.
        • Kiguli S.
        • Opoka R.O.
        • et al.
        Mortality after fluid bolus in African children with severe infection.
        N Engl J Med. 2011; 364: 2483-2495
        • de-Madaria E.
        • Soler-Sala G.
        • Sanchez-Paya J.
        • et al.
        Influence of fluid therapy on the prognosis of acute pancreatitis: A prospective cohort study.
        Am J Gastroenterol. 2011; 106: 1843-1850
        • Rosenberg A.L.
        • Dechert R.E.
        • Park P.K.
        • et al.
        Review of a large clinical series: Association of cumulative fluid balance on outcome in acute lung injury: A retrospective review of the ARDSnet tidal volume study cohort.
        J Intensive Care Med. 2009; 24: 35-46
        • Bundgaard-Nielsen M.
        • Secher N.H.
        • Kehlet H.
        “Liberal” versus “restrictive” perioperative fluid therapy—A critical assessment of the evidence.
        Acta Anaesthesiol Scand. 2009; 53: 843-851
        • Marik P.E.
        • Baram M.
        • Vahid B.
        Does the central venous pressure predict fluid responsiveness?.
        Chest. 2008; 134: 172-178
        • Saugel B.
        • Ringmaier S.
        • Holzapfel K.
        • et al.
        Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients: A prospective trial.
        J Crit Care. 2011; 26: 402-410
        • Fick A.
        Ueber die Messung des Blutquantums in den Herzventrikeln.
        Sitzungsber PhysiologischMedizinosche Ges Wuerzburg. 1870; 2: 16
        • Swan H.J.
        • Ganz W.
        • Forrester J.
        • et al.
        Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter.
        N Engl J Med. 1970; 283: 447-451
        • Critchley L.A.
        • Critchley J.A.
        A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques.
        J Clin Monit Comput. 1999; 15: 85-91
        • Critchley L.A.
        • Lee A.
        • Ho A.M.
        A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output.
        Anesth Analg. 2010; 111: 1180-1192
        • Bland J.M.
        • Altman D.G.
        Statistical methods for assessing agreement between two methods of clinical measurement.
        Lancet. 1986; i: 307-310
        • Jaffe M.B.
        Partial CO2 rebreathing cardiac output – Operating principles of the NICO system.
        J Clin Monit Comput. 1999; 15: 387-401
        • Rocco M.
        • Spadetta G.
        • Morelli A.
        • et al.
        A comparative evaluation of thermodilution and partial CO2 rebreathing techniques for cardiac output assessment in critically ill patients during assisted ventilation.
        Intensive Care Med. 2004; 30: 82-87
        • Nilsson L.B.
        • Eldrup N.
        • Berthelsen P.G.
        Lack of agreement between thermodilution and carbon dioxide-rebreathing cardiac output.
        Acta Anaesthesiol Scand. 2001; 45: 680-685
        • van Heerden P.V.
        • Baker S.
        • Lim S.I.
        • et al.
        Clinical evaluation of the noninvasive cardiac output (NICO) monitor in the intensive care unit.
        Anaesthesiol Intensive Care. 2000; 28: 427-430
        • Odenstedt H.
        • Stenqvist O.
        • Lundin S.
        Clinical evaluation of a partial CO2 rebreathing technique for cardiac output monitoring in critically ill patients.
        Acta Anaesthesiol Scand. 2002; 46: 152-159
        • Binder J.C.
        • Parkin W.G.
        Noninvasive cardiac output determination: Comparison of a new partial-rebreathing technique with thermodilution.
        Anaesthesiol Intensive Care. 2001; 29: 19-23
        • Kotake Y.
        • Moriyama K.
        • Innami Y.
        • et al.
        Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients undergoing aortic reconstruction surgery.
        Anesthesiol. 2003; 99: 283-288
        • Tachibana K.
        • Imanaka H.
        • Takeuchi M.
        • et al.
        Effects of reduced rebreathing time, in spontaneously breathing patients, on respiratory effort and accuracy in cardiac output measurement when using a partial carbon dioxide rebreathing technique: A prospective observational study.
        Crit Care. 2005; 9: R569-R574
        • Tachibana K.
        • Imanaka H.
        • Takeuchi M.
        • et al.
        Noninvasive cardiac output measurement using partial carbon dioxide rebreathing is less accurate at settings of reduced minute ventilation and when spontaneous breathing is present.
        Anesthesiol. 2003; 98: 830-837
        • Lefrant J.Y.
        • Bruelle P.
        • Aya A.G.
        • et al.
        Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients.
        Intensive Care Med. 1998; 24: 347-352
        • Valtier B.
        • Cholley B.P.
        • Belot J.P.
        • et al.
        Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler.
        Am J Respir Crit Care Med. 1998; 158: 77-83
        • Marik P.E.
        • Levitov A.
        • Young A.
        • et al.
        The use of NICOM (bioreactance) and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients.
        Ann Crit Care. 2012; (in press)
        • Sinclair S.
        • James S.
        • Singer M.
        Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: Randomised controlled trial.
        BMJ. 1997; 315: 909-912
        • Tan H.L.
        • Pinder M.
        • Parsons R.
        • et al.
        Clinical evaluation of USCOM ultrasonic cardiac output monitor in cardiac surgical patients in intensive care unit.
        Br J Anaesth. 2005; 94: 287-291
        • Thom O.
        • Taylor D.M.
        • Wolfe R.E.
        • et al.
        Comparison of a supra-sternal cardiac output monitor (USCOM) with the pulmonary artery catheter.
        Br J Anaesth. 2009; 103: 800-804
        • Boyle M.
        • Steel L.
        • Flynn G.M.
        • et al.
        Assessment of the clinical utility of an ultrasonic monitor of cardiac output (the USCOM) and agreement with thermodilution measurement.
        Crit Care Resusc. 2009; 11: 198-203
        • Chand R.
        • Mehta Y.
        • Trehan N.
        Cardiac output estimation with a new Doppler device after off-pump coronary artery bypass surgery.
        J Cardiothorac Vasc Anesth. 2006; 20: 315-319
        • Montenij L.J.
        • de Waal E.E.
        • Buhre W.F.
        Arterial waveform analysis in anesthesia and critical care.
        Curr Opin Anaesthesiol. 2011; 24: 651-656
        • Camporota L.
        • Beale R.
        Pitfalls in haemodynamic monitoring based on the arterial pressure waveform.
        Crit Care. 2010; 14: 124
        • Bein B.
        • Worthmann F.
        • Tonner P.H.
        • et al.
        Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output.
        J Cardiothorac Vasc Anesth. 2004; 18: 185-189
        • Mora B.
        • Ince I.
        • Birkenberg B.
        • et al.
        Validation of cardiac output measurement with the LiDCOTM pulse contour system in patients with impaired left ventricular function after cardiac surgery.
        J Anesth. 2011; 66: 675-681
        • Garcia-Rodriguez C.
        • Pittman J.
        • Cassell C.H.
        • et al.
        Lithium dilution cardiac output measurement: A clinical assessment of central venous and peripheral venous indicator injection.
        Crit Care Med. 2002; 30: 2199-2204
        • Linton R.
        • Band D.
        • O'Brien T.
        • et al.
        Lithium dilution cardiac output measurement: A comparison with thermodilution.
        Crit Care Med. 1997; 25: 1796-1800
        • Oren-Grinberg A.
        The PiCCO monitor.
        Int Anesthesiol Clin. 2010; 48: 57-85
        • Holm C.
        • Mayr M.
        • Horbrand F.
        • et al.
        Reproducibility of transpulmonary thermodilution measurements in patients with burn shock and hypothermia.
        J Burn Care Rehabil. 2005; 26: 260-265
        • Hamzaoui O.
        • Monnet X.
        • Richard C.
        • et al.
        Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period.
        Crit Care Med. 2008; 36: 434-440
        • Fernandez-Mondejar E.
        • Rivera-Fernandez R.
        • Garcia-Delgado M.
        • et al.
        Small increases in extravascular lung water are accurately detected by transpulmonary thermodilution.
        J Trauma. 2005; 59: 1420-1423
        • Kozieras J.
        • Thuemer O.
        • Sakka S.G.
        Influence of an acute increase in systemic vascular resistance on transpulmonary thermodilution-derived parameters in critically ill patients.
        Intensive Care Med. 2007; 33: 1619-1623
        • Katzenelson R.
        • Perel A.
        • Berkenstadt H.
        • et al.
        Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water.
        Crit Care Med. 2004; 32: 1550-1554
        • Marik P.E.
        • Cavallazzi R.
        • Vasu T.
        • et al.
        Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients.
        Crit Care Med. 2009; 37: 2642-2647
        • Mutoh T.
        • Kazumata K.
        • Ishikawa T.
        • et al.
        Performance of bedside transpulmonary thermodilution monitoring for goal-directed hemodynamic management after subarachnoid hemorrhage.
        Stroke. 2009; 40: 2368-2374
        • Langewouters G.J.
        • Wesseling K.H.
        • Goedhard W.J.
        The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model.
        J Biomech. 1984; 17: 425-435
        • Chakravarthy M.
        • Patil T.A.
        • Jayaprakash K.
        • et al.
        Comparison of simultaneous estimation of cardiac output by four techniques in patients undergoing off-pump coronary artery bypass surgery—A prospective observational study.
        Ann Card Anaesth. 2007; 10: 121-126
        • de Waal E.E.
        • Kalkman C.J.
        • Rex S.
        • et al.
        Validation of a new arterial pulse contour-based cardiac output device.
        Crit Care Med. 2007; 35: 1904-1909
        • Manecke Jr, G.R.
        • Auger W.R.
        Cardiac output determination from the arterial pressure wave: Clinical testing of a novel algorithm that does not require calibration.
        J Cardiothorac Vasc Anesth. 2007; 21: 3-7
        • McGee W.T.
        • Horswell J.L.
        • Caldeeron J.
        • et al.
        Validation of a continuous, arterial pressure-based cardiac output measurement: A multicenter, prospective clinical trial.
        Crit Care. 2007; 11: R105
        • Zimmermann A.
        • Kufner C.
        • Hofbauer S.
        • et al.
        The accuracy of the Vigileo/FloTrac continuous cardiac output monitor.
        J Cardiothorac Vasc Anesth. 2008; 22: 388-393
        • Marque S.
        • Cariou A.
        • Chiche J.D.
        • et al.
        Comparison between Flotrac-Vigileo and bioreactance, a totally noninvasive method for cardiac output monitoring.
        Crit Care. 2009; 13: R73
        • Ostergaard M.
        • Nielsen J.
        • Nygaard E.
        Pulse contour cardiac output: An evaluation of the FloTrac method.
        Eur J Anaesthesiol. 2009; 26: 484-489
        • Monnet X.
        • Anguel N.
        • Naudin B.
        • et al.
        Arterial pressure-based cardiac output in septic patients: Different accuracy of pulse contour and uncalibrated pressure waveform devices.
        Crit Care. 2010; 14: R109
        • Opdam H.I.
        • Wan L.
        • Bellomo R.
        A pilot assessment of the FloTrac cardiac output monitoring system.
        Intensive Care Med. 2007; 33: 344-349
        • Sander M.
        • Spies C.D.
        • Grubitzsch H.
        • et al.
        Comparison of uncalibrated arterial waveform analysis in cardiac surgery patients with thermodilution cardiac output measurements.
        Crit Care. 2006; 10: R164
        • Breukers R.M.
        • Sepehrkhouy S.
        • Spiegelenberg S.R.
        • et al.
        Cardiac output measured by a new arterial pressure waveform analysis method without calibration compared with thermodilution after cardiac surgery.
        J Cardiothorac Vasc Anesth. 2007; 21: 632-635
        • Mayer J.
        • Boldt J.
        • Schollhorn T.
        • et al.
        Semi-invasive monitoring of cardiac output by a new device using arterial pressure waveform analysis: A comparison with intermittent pulmonary artery thermodilution in patients undergoing cardiac surgery.
        Br J Anaesth. 2007; 98: 176-182
        • Sander M.
        • Spies C.D.
        • Foer A.
        • et al.
        Cardiac output measurement by arterial waveform analysis in cardiac surgery—A comparison of measurements derived from waveforms of the radial artery versus the ascending aorta.
        J Int Med Res. 2008; 36: 414-419
        • Cecconi M.
        • Dawson D.
        • Casaretti R.
        • et al.
        A prospective study of the accuracy and precision of continuous cardiac output monitoring devices as compared to intermittent thermodilution.
        Minerva Anestesiol. 2010; 76: 1010-1017
        • Button D.
        • Weibel L.
        • Reuthebuch O.
        • et al.
        Clinical evaluation of the FloTrac/Vigileo system and two established continuous cardiac output monitoring devices in patients undergoing cardiac surgery.
        Br J Anaesth. 2007; 99: 329-336
        • Cannesson M.
        • Attof Y.
        • Rosamel P.
        • et al.
        Comparison of FloTrac cardiac output monitoring system in patients undergoing coronary artery bypass grafting with pulmonary artery cardiac output measurements.
        Eur J Anaesthesiol. 2007; 24: 832-839
        • Sakka S.G.
        • Kozieras J.
        • Thuemer O.
        • et al.
        Measurement of cardiac output: A comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis.
        Br J Anaesth. 2007; 99: 337-342
        • Mehta Y.
        • Chand R.K.
        • Sawhney R.
        • et al.
        Cardiac output monitoring: Comparison of a new arterial pressure waveform analysis to the bolus thermodilution technique in patients undergoing off-pump coronary artery bypass surgery.
        J Cardiothorac Vasc Anesth. 2008; 22: 394-399
        • Staier K.
        • Wiesenack C.
        • Gunkel L.
        • et al.
        Cardiac output determination by thermodilution and arterial pulse waveform analysis in patients undergoing aortic valve replacement.
        Can J Anaesth. 2008; 55: 22-28
        • Compton F.D.
        • Zukunft B.
        • Hoffmann C.
        • et al.
        Performance of a minimally invasive uncalibrated cardiac output monitoring system (Flotrac/Vigileo) in haemodynamically unstable patients.
        Br J Anaesth. 2008; 100: 451-456
        • Biais M.
        • Nouette-Gaulain K.
        • Cottenceau V.
        • et al.
        Cardiac output measurement in patients undergoing liver transplantation: Pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis.
        Anesth Analg. 2008; 106: 1480-1486
        • Eleftheriadis S.
        • Galatoudis Z.
        • Didilis V.
        • et al.
        Variations in arterial blood pressure are associated with parallel changes in FlowTrac/Vigileo (R)–derived cardiac output measurements: A prospective comparison study.
        Crit Care. 2009; 13: R179
        • Hamm J.B.
        • Nguyen B.V.
        • Kiss G.
        • et al.
        Assessment of a cardiac output device using arterial pulse waveform analysis, Vigileo, in cardiac surgery compared to pulmonary arterial thermodilution.
        Anaesth Intensive Care. 2010; 38: 295-301
        • Hofer C.K.
        • Button D.
        • Weibel L.
        • et al.
        Uncalibrated radial and femoral arterial pressure waveform analysis for continuous cardiac output measurement: An evaluation in cardiac surgery patients.
        J Cardiothorac Vasc Anesth. 2010; 24: 257-264
        • Jo Y.Y.
        • Song J.W.
        • Yoo Y.C.
        • et al.
        The uncalibrated pulse contour cardiac output during off-pump coronary bypass surgery: Performance in patients with a low cardiac output status and a reduced left ventricular function.
        Korean J Anesthesiol. 2011; 60: 237-243
        • Slagt C.
        • Beute J.
        • Hoeksema M.
        • et al.
        Cardiac output derived from arterial pressure waveform analysis without calibration vs. thermodilution in septic shock: Evolving accuracy of software versions.
        Eur J Anaesthesiol. 2010; 27: 550-554
        • Junttila E.K.
        • Koskenkari J.K.
        • Ohtonen P.P.
        • et al.
        Uncalibrated arterial pressure waveform analysis for cardiac output monitoring is biased by low peripheral resistance in patients with intracranial haemorrhage.
        Br J Anaesth. 2011; 107: 581-586
        • Haenggi M.
        • Barthelmes D.
        • Ulmer H.
        • et al.
        Comparison of non-calibrated pulse-contour analysis with continuous thermodilution for cardiac output assessment in patients with induced hypothermia after cardiac arrest.
        Resuscitation. 2011; 82: 423-426
        • Saraceni E.
        • Rossi S.
        • Persona P.
        • et al.
        Comparison of two methods for cardiac output measurement in critically ill patients.
        Br J Anaesth. 2011; 106: 690-694
        • Vetrugno L.
        • Costa M.G.
        • Spagnesi L.
        • et al.
        Uncalibrated arterial pulse cardiac output measurements in patients with moderately abnormal left ventricular function.
        J Cardiothorac Vasc Anesth. 2011; 25: 53-58
        • Prasser C.
        • Trabold B.
        • Schwab A.
        • et al.
        Evaluation of an improved algorithm for arterial pressure-based cardiac output assessment without external calibration.
        Intensive Care Med. 2007; 33: 2223-2225
        • Della Rocca G.
        • Costa M.G.
        • Chiarandini P.
        • et al.
        Arterial pulse cardiac output agreement with thermodilution in patients in hyperdynamic conditions.
        J Cardiothorac Vasc Anesth. 2008; 22: 681-687
        • Mayer J.
        • Boldt J.
        • Wolf M.W.
        • et al.
        Cardiac output derived from arterial pressure waveform analysis in patients undergoing cardiac surgery: Validity of a second generation device.
        Anesth Analg. 2008; 106: 867-872
        • Senn A.
        • Button D.
        • Zollinger A.
        • et al.
        Assessment of cardiac output changes using a modified FloTrac/Vigileo algorithm in cardiac surgery patients.
        Crit Care. 2009; 13: R32
        • Biancofiore G.
        • Critchley L.A.
        • Lee A.
        • et al.
        Evaluation of an uncalibrated arterial pulse contour cardiac output monitoring system in cirrhotic patients undergoing liver surgery.
        Br J Anaesth. 2009; 102: 47-54
        • Zimmermann A.
        • Steinwendner J.
        • Hofbauer S.
        • et al.
        The accuracy of the Vigileo/FloTrac system has been improved – Follow-up after a software update: A blinded comparative study of 30 cardiosurgical patients.
        J Cardiothorac Vasc Anesth. 2009; 23: 929-931
        • Hadian M.
        • Kim H.K.
        • Severyn D.A.
        • et al.
        Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters.
        Crit Care. 2010; 14: R212
        • Krejci V.
        • Vannucci A.
        • Abbas A.
        • et al.
        Comparison of calibrated and uncalibrated arterial pressure-based cardiac output monitors during orthotopic liver transplantation.
        Liver Transpl. 2010; 16: 773-782
        • Mutoh T.
        • Ishikawa T.
        • Nishino K.
        • et al.
        Evaluation of the FloTrac uncalibrated continuous cardiac output system for perioperative hemodynamic monitoring after subarachnoid hemorrhage.
        J Neurosurg Anesthesiol. 2009; 21: 218-225
        • Biancofiore G.
        • Critchley L.A.
        • Lee A.
        • et al.
        Evaluation of a new software version of the FloTrac/Vigileo (version 3.02) and a comparison with previous data in cirrhotic patients undergoing liver transplant surgery.
        Anesth Analg. 2011; 113: 515-522
        • De Backer D.
        • Marx G.
        • Tan A.
        • et al.
        Arterial pressure-based cardiac output monitoring: A multicenter validation of the third-generation software in septic patients.
        Intensive Care Med. 2011; 37: 233-240
        • Metzelder S.
        • Coburn M.
        • Fries M.
        • et al.
        Performance of cardiac output measurement derived from arterial pressure waveform analysis in patients requiring high-dose vasopressor therapy.
        Br J Anaesth. 2011; 106: 776-784
        • Phan T.D.
        • Kluger R.
        • Wan C.
        • et al.
        A comparison of three minimally invasive cardiac output devices with thermodilution in elective cardiac surgery.
        Anaesthesiol Intensive Care. 2011; 39: 1014-1021
        • Monnet X.
        • Anguel N.
        • Jozwiak M.
        • et al.
        Third-generation FloTrac/Vigileo does not reliably track changes in cardiac output induced by norepinephrine in critically ill patients.
        Br J Anaesth. 2012; 108: 615-622
        • Su B.C.
        • Tsai Y.F.
        • Chen C.Y.
        • et al.
        Cardiac output derived from arterial pressure waveform analysis in patients undergoing liver transplantation: Validity of a third generation device.
        Transplant Proc. 2012; 44: 424-428
        • Lorsomradee S.
        • Lorsomradee S.
        • Cromheecke S.
        • et al.
        Uncalibrated arterial pulse contour analysis versus continuous thermodilution technique: Effects of alterations in arterial waveform.
        J Cardiothorac Vasc Anesth. 2007; 21: 636-643
        • Benes J.
        • Chytra I.
        • Altmann P.
        • et al.
        Intraopeartive fluid optimization using stroke volume variation in high risk surgical patients: Results of prospective randomized study.
        Crit Care. 2010; 14: R118
        • Machare-Delgado E.
        • DeCaro M.
        • Marik P.E.
        Inferior vena cava variation compared to pulse contour analysis as predictors of fluid responsiveness: A prospective cohort study.
        J Intensive Care Med. 2011; 26: 116-124
        • Takala J.
        • Ruokonen E.
        • Tenhunen J.J.
        • et al.
        Early noninvasive cardiac output monitoring in hemodynamically unstable intensive care patents: A multicenter randomized controlled trial.
        Crit Care. 2011; 15: R148
        • Romano S.M.
        • Pistolesi M.
        Assessment of cardiac output from systemic arterial pressure in humans.
        Crit Care Med. 2002; 30: 1834-1841
        • Scolletta S.
        • Romano S.M.
        • Biagioli B.
        • et al.
        Pressure recording analytical method (PRAM) for measurement of cardiac output during various haemodynamic states.
        Br J Anaesth. 2005; 95: 159-165
        • Franchi F.
        • Silvestri R.
        • Cubattoli L.
        • et al.
        Comparison between an uncalibrated pulse contour method and thermodilution technique for cardiac output estimation in septic patients.
        Br J Anaesth. 2011; 107: 202-208
        • Calamandrei M.
        • Mirabile L.
        • Muschetta S.
        • et al.
        Assessment of cardiac output in children: A comparison between the pressure recording analytical method and Doppler echocardiography.
        Pediatr Crit Care Med. 2008; 9: 310-312
        • Giomarelli P.
        • Biagioli B.
        • Scolletta S.
        Cardiac output monitoring by pressure recording analytical method in cardiac surgery.
        Eur J Cardiothorac Surg. 2004; 26: 515-520
        • Scolletta S.
        • Miraldi F.
        • Romano S.M.
        • et al.
        Continuous cardiac output monitoring with an uncalibrated pulse contour method in patients supported with mechanical pulsatile assist device.
        Interact Cardiovasc Thorac Surg. 2011; 13: 52-56
        • Paarmann H.
        • Groesdonk H.V.
        • Sedemund-Adib B.
        • et al.
        Lack of agreement between pulmonary arterial thermodilution cardiac output and the pressure recording analytical method in postoperative cardiac surgery patients.
        Br J Anaesth. 2011; 106: 475-481
        • Maj G.
        • Monaco F.
        • Landoni G.
        • et al.
        Cardiac index assessment by the pressure recording analytic method in unstable patients with atrial fibrillation.
        J Cardiothorac Vasc Anesth. 2011; 25: 476-480
        • Zangrillo A.
        • Maj G.
        • Monaco F.
        • et al.
        Cardiac index validation using the pressure recording analytic method in unstable patients.
        J Cardiothorac Vasc Anesth. 2010; 24: 265-269
        • Michard F.
        • Teboul J.L.
        Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation.
        Crit Care. 2000; 4: 282-289
        • Renner J.
        • Broch O.
        • Duetschke P.
        • et al.
        Prediction of fluid responsiveness in infants and neonates undergoing congenital heart surgery.
        Br J Anaesth. 2012; 108: 108-115
        • Geerts B.
        • de Wilde R.
        • Aarts L.
        • et al.
        Pulse contour analysis to assess hemodynamic response to passive leg raising.
        J Cardiothorac Vasc Anesth. 2011; 25: 48-52
        • Wyffels P.A.
        • Sergeant P.
        • Wouters P.F.
        The value of pulse pressure and stroke volume variation as predictors of fluid responsiveness during open chest surgery.
        J Anesth. 2010; 65: 704-709
        • Pearse R.
        • Dawson D.
        • Rhodes A.
        • et al.
        Early goal-directed therapy after major surgery reduces complications and duration of hospital stay: A randomised controlled trial.
        Crit Care. 2005; 9: R687-R693
        • Cannesson M.
        • Le M.Y.
        • Hofer C.K.
        • et al.
        Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: A “gray zone” approach.
        Anesthesiol. 2011; 115: 231-241
        • Jacques D.
        • Bendjelid K.
        • Duperret S.
        • et al.
        Pulse pressure variation and stroke volume variation during increased intra-abdominal pressure: An experimental study.
        Crit Care. 2011; 15: R33
        • Mahjoub Y.
        • Pila C.
        • Friggeri A.
        • et al.
        Assessing fluid responsiveness in critically ill patients: False-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle.
        Crit Care Med. 2009; 37: 2570-2575
        • Muller L.
        • Louart G.
        • Bousquet P.J.
        • et al.
        The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness.
        Intensive Care Med. 2010; 36: 496-503
        • von Ballmoos M.W.
        • Takala J.
        • Roeck M.
        • et al.
        Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: A clinical study.
        Crit Care. 2010; 14: R111
        • Lakhal K.
        • Ehrmann S.
        • Benzekri-Lefevre D.
        • et al.
        Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome.
        Crit Care. 2011; 15: R85
        • Lansdorp B.
        • Lemson J.
        • van Putten M.J.
        • et al.
        Dynamic indices do not predict volume responsiveness in routine clinical practice.
        Br J Anaesth. 2012; 108: 395-401
        • Raaijmakers E.
        • Faes T.J.
        • Scholten R.J.
        • et al.
        A meta-analysis of three decades of validating thoracic impedance cardiography.
        Crit Care Med. 1999; 27: 1203-1213
        • Bowling L.S.
        • Sageman W.S.
        • O'Connor S.M.
        • et al.
        Lack of agreement between measurement of ejection fraction by impedance cardiography versus radionuclide ventriculography.
        Crit Care Med. 1993; 21: 1523-1527
        • Marik P.E.
        • Pendelton J.E.
        • Smith R.
        A comparison of hemodynamic parameters derived from transthoracic electrical bioimpedance with those parameters obtained by thermodilution and ventricular angiography.
        Crit Care Med. 1997; 25: 1545-1550
        • Critchley L.A.
        • Calcroft R.M.
        • Tan P.Y.
        • et al.
        The effect of lung injury and excessive lung fluid, on impedance cardiac output measurements, in the critically ill.
        Intensive Care Med. 2000; 26: 679-685
        • Sageman W.S.
        • Riffenburgh R.H.
        • Spiess B.D.
        Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery.
        J Cardiothorac Vasc Anesth. 2002; 16: 8-14
        • Gujjar A.R.
        • Muralidhar K.
        • Banakal S.
        • et al.
        Noninvasive cardiac output by transthoracic electrical bioimpedence in post-cardiac surgery patients: Comparison with thermodilution method.
        J Clin Monit Comput. 2008; 22: 175-180
        • Spiess B.D.
        • Patel M.A.
        • Soltow L.O.
        • et al.
        Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: Evaluation of a second-generation bioimpedance device.
        J Cardiothorac Vasc Anesth. 2001; 15: 567-573
        • Kamath S.A.
        • Drazner M.H.
        • Tasissa G.
        • et al.
        Correlation of impedance cardiography with invasive hemodynamic measurements in patients with advanced heart failure: The bioimpedance CardioGraphy (BIG) substudy of the evaluation study of congestive heart failure and Pulmonary Artery catheterization effectiveness (ESCAPE) trial.
        Am Heart J. 2009; 158: 217-223
        • Raue W.
        • Swierzy M.
        • Koplin G.
        • et al.
        Comparison of electrical velocimetry and transthoracic thermodilution technique for cardiac output assessment in critically ill patients.
        Eur J Anaesthesiol. 2009; 26: 1067-1071
        • Engoren M.
        • Barbee D.
        Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method.
        Am J Crit Care. 2005; 14: 40-45
        • Wang D.J.
        • Gottlieb S.S.
        Impedance cardiography: More questions than answers.
        Curr Cardiol Rep. 2006; 8: 180-186
        • Keren H.
        • Burkhoff D.
        • Squara P.
        Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance.
        Am J Physiol. 2007; 293: H583-H589
        • Raval N.Y.
        • Squara P.
        • Cleman M.
        • et al.
        Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique.
        J Clin Monit Comput. 2008; 22: 113-119
        • Squara P.
        • Rotcajg D.
        • Denjean D.
        • et al.
        Comparison of monitoring performance of bioreactance vs. pulse contour during lung recruitment maneuvers.
        Crit Care. 2009; 13: R125
        • Rich J.D.
        • Archer S.L.
        • Rich S.
        Evaluation of noninvasively measured cardiac output in patients with pulmonary hypertension.
        Am J Respir Crit Care Med. 2011; 183: A6440
        • Squara P.
        • Denjean D.
        • Estagnasie P.
        • et al.
        Noninvasive cardiac output monitoring (NICOM): A clinical validation.
        Intensive Care Med. 2007; 33: 1191-1194
        • Heerdt P.M.
        • Wagner C.L.
        • DeMais M.
        • et al.
        Noninvasive cardiac ouput monitoring with bioreactance as an alternative to invasive instrumentation for preclinical drug evaluation in beagles.
        J Pharmacol Toxicol Methods. 2011; 64: 111-118
        • Benomar B.
        • Ouattara A.
        • Estagnasie P.
        • et al.
        Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test.
        Intensive Care Med. 2010; 36: 1875-1881
        • Waldron N.H.
        • Miller T.E.
        • Nardiello J.
        • et al.
        NICOM versus EDM guided goal directed fluid therapy in the perioperative period.
        Anesthesiology. 2011; 115: A680
        • Levitov A.
        • Marik P.E.
        Echocardiographic assessment of preload responsiveness in critically ill patients.
        Cardiol Res Pract. 2012; 2012: 819696
        • Salem R.
        • Vallee F.
        • Rusca M.
        • et al.
        Hemodynamic monitoring by echocardiography in the ICU: The role of the new echo techniques.
        Curr Opin Crit Care. 2008; 14: 561-568