Vasoplegia After Cardiovascular Procedures—Pathophysiology and Targeted Therapy

Published:December 06, 2017DOI:
      Vasoplegic syndrome, characterized by low systemic vascular resistance and hypotension in the presence of normal or supranormal cardiac function, is a frequent complication of cardiovascular surgery. It is associated with a diffuse systemic inflammatory response and is mediated largely through cellular hyperpolarization, high levels of inducible nitric oxide, and a relative vasopressin deficiency. Cardiopulmonary bypass is a particularly strong precipitant of the vasoplegic syndrome, largely due to its association with nitric oxide production and severe vasopressin deficiency. Postoperative vasoplegic shock generally is managed with vasopressors, of which catecholamines are the traditional agents of choice. Norepinephrine is considered to be the first-line agent and may have a mortality benefit over other drugs. Recent investigations support the use of noncatecholamine vasopressors, vasopressin in particular, to restore vascular tone. Alternative agents, including methylene blue, hydroxocobalamin, corticosteroids, and angiotensin II, also are capable of restoring vascular tone and improving vasoplegia, but their effect on patient outcomes is unclear.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Cardiothoracic and Vascular Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gomes W.J.
        • Carvalho A.C.
        • Palma J.H.
        • et al.
        Vasoplegic syndrome after open heart surgery.
        J Cardiovasc Surg. 1998; 39: 619-623
        • Levin M.A.
        • Lin H.M.
        • Castillo J.G.
        • et al.
        Early on-cardiopulmonary bypass hypotension and other factors associated with vasoplegic syndrome.
        Circulation. 2009; 120: 1664-1671
        • Mets B.
        • Michler R.E.
        • Delphin E.D.
        • et al.
        Refractory vasodilation after cardiopulmonary bypass for heart transplantation in recipients on combined amiodarone and angiotensin-converting enzyme inhibitor therapy: A role for vasopressin administration.
        J Cardiothorac Vasc Anesth. 1998; 12: 326-329
        • Omar S.
        • Zedan A.
        • Nugent K.
        Cardiac vasoplegia syndrome: Pathophysiology, risk factors and treatment.
        Am J Med Sci. 2015; 349: 80-88
        • Landry D.W.
        • Oliver J.A.
        The pathogenesis of vasodilatory shock.
        N Engl J Med. 2001; 345: 588-595
        • Fischer G.W.
        • Levin M.A.
        Vasoplegia during cardiac surgery: Current concepts and management.
        Semin Thorac Cardiovasc Surg. 2010; 22: 140-144
        • Weis F.
        • Kilger E.
        • Beiras-Fernandez A.
        • et al.
        Association between vasopressor dependence and early outcome in patients after cardiac surgery.
        Anaesthesia. 2006; 61: 938-942
        • Szabo C.
        Role of poly(ADP-ribose) synthetase activation in the suppression of cellular energetics in response to nitric oxide and peroxynitrite.
        Biochem Soc Trans. 1997; 25: 919-924
        • Hauser B.
        • Bracht H.
        • Matejovic M.
        • et al.
        Nitric oxide synthase inhibition in sepsis? Lessons learned from large-animal studies.
        Anesth Analg. 2005; 101: 488-498
        • Lopez A.
        • Lorente J.A.
        • Steingrub J.
        • et al.
        Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock.
        Critical Care Med. 2004; 32: 21-30
        • Landry D.W.
        • Levin H.R.
        • Gallant E.M.
        • et al.
        Vasopressin deficiency contributes to the vasodilation of septic shock.
        Circulation. 1997; 95: 1122-1125
        • Wilson M.F.
        • Brackett D.J.
        • Tompkins P.
        • et al.
        Elevated plasma vasopressin concentrations during endotoxin and E. coli shock.
        Adv Shock Res. 1981; 6: 15-26
        • Wakatsuki T.
        • Nakaya Y.
        • Inoue I.
        Vasopressin modulates K(+)-channel activities of cultured smooth muscle cells from porcine coronary artery.
        Am J Physiol. 1992; 263: H491-H496
        • Umino T.
        • Kusano E.
        • Muto S.
        • et al.
        AVP inhibits LPS- and IL-1beta-stimulated NO and cGMP via V1 receptor in cultured rat mesangial cells.
        Am J Physiol. 1999; 276: F433-F441
        • Hall R.I.
        • Smith M.S.
        • Rocker G.
        The systemic inflammatory response to cardiopulmonary bypass: Pathophysiological, therapeutic, and pharmacological considerations.
        Anesth Analg. 1997; 85: 766-782
        • Wan S.
        • LeClerc J.L.
        • Vincent J.L.
        Inflammatory response to cardiopulmonary bypass: Mechanisms involved and possible therapeutic strategies.
        Chest. 1997; 112: 676-692
        • Kerbaul F.
        • Guidon C.
        • Lejeune P.J.
        • et al.
        Hyperprocalcitonemia is related to noninfectious postoperative severe systemic inflammatory response syndrome associated with cardiovascular dysfunction after coronary artery bypass graft surgery.
        J Cardiothorac Vasc Anesth. 2002; 16: 47-53
        • Sundaram V.
        • Fang J.C.
        Gastrointestinal and liver issues in heart failure.
        Circulation. 2016; 133: 1696-1703
        • Argenziano M.
        • Chen J.M.
        • Choudhri A.F.
        • et al.
        Management of vasodilatory shock after cardiac surgery: Identification of predisposing factors and use of a novel pressor agent.
        J Thorac Cardiovasc Surg. 1998; 116: 973-980
        • Colson P.H.
        • Bernard C.
        • Struck J.
        • et al.
        Post cardiac surgery vasoplegia is associated with high preoperative copeptin plasma concentration.
        Crit Care. 2011; 15: R255
        • Angus D.C.
        • Barnato A.E.
        • Bell D.
        • et al.
        A systematic review and meta-analysis of early goal-directed therapy for septic shock: The ARISE, ProCESS and ProMISe Investigators.
        Intensive Care Med. 2015; 41: 1549-1560
        • Rhodes A.
        • Evans L.E.
        • Alhazzani W.
        • et al.
        Surviving Sepsis Campaign: International Guidelines for management of sepsis and septic shock: 2016.
        Critical Care Med. 2015; 45: 486-552
        • Fuda G.
        • Denault A.
        • Deschamps A.
        • et al.
        Risk factors involved in central-to-radial arterial pressure gradient during cardiac surgery.
        Anesth Analg. 2016; 122: 624-632
        • Papadopoulos G.
        • Sintou E.
        • Siminelakis S.
        • et al.
        Perioperative infusion of low- dose of vasopressin for prevention and management of vasodilatory vasoplegic syndrome in patients undergoing coronary artery bypass grafting: A double-blind randomized study.
        J Cardiothorac Surg. 2010; 5: 17
        • Lange M.
        • Aken H.V.
        • Westphal M.
        Role of vasopressinergic V1 receptor agonists in the treatment of perioperative catecholamine-refractory arterial hypotension.
        Best Pract Res Clin Anaesthesiol. 2008; 22: 369-381
        • Murphy G.J.
        • Pike K.
        • Rogers C.A.
        • et al.
        Liberal or restrictive transfusion after cardiac surgery.
        N Engl J Med. 2015; 372: 997-1008
        • Marik P.E.
        Early management of severe sepsis: Concepts and controversies.
        Chest. 2014; 145: 1407-1418
        • Boyd J.H.
        • Forbes J.
        • Nakada T.A.
        • et al.
        Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality.
        Critical Care Med. 2011; 39: 259-265
        • Vieillard-Baron A.
        • Caille V.
        • Charron C.
        • et al.
        Actual incidence of global left ventricular hypokinesia in adult septic shock.
        Critical Care Med. 2008; 36: 1701-1706
        • Vincent J.L.
        • De Backer D.
        Circulatory shock.
        N Engl J Med. 2013; 369: 1726-1734
        • Vail E.
        • Gershengorn H.B.
        • Hua M.
        • et al.
        Association between US norepinephrine shortage and mortality among patients with septic shock.
        JAMA. 2017; 317: 1433-1442
        • De Backer D.
        • Biston P.
        • Devriendt J.
        • et al.
        Comparison of dopamine and norepinephrine in the treatment of shock.
        N Engl J Med. 2010; 362: 779-789
        • Annane D.
        • Vignon P.
        • Renault A.
        • et al.
        Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: A randomised trial.
        Lancet. 2007; 370: 676-684
        • De Backer D.
        • Aldecoa C.
        • Njimi H.
        • et al.
        Dopamine versus norepinephrine in the treatment of septic shock: A meta-analysis.
        Crit Care Med. 2012; 40: 725-730
        • Egi M.
        • Bellomo R.
        • Langenberg C.
        • et al.
        Selecting a vasopressor drug for vasoplegic shock after adult cardiac surgery: A systematic literature review.
        Ann Thorac Surg. 2007; 83: 715-723
        • Russell J.A.
        • Walley K.R.
        • Singer J.
        • et al.
        Vasopressin versus norepinephrine infusion in patients with septic shock.
        N Engl J Med. 2008; 358: 877-887
        • Gordon A.C.
        • Russell J.A.
        • Walley K.R.
        • et al.
        The effects of vasopressin on acute kidney injury in septic shock.
        Intensive Care Med. 2010; 36: 83-91
        • Gordon A.C.
        • Mason A.J.
        • Thirunavukkarasu N.
        • et al.
        Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: The VANISH randomized Clinical Trial.
        JAMA. 2016; 316: 509-518
      1. Morales DL, Garrido MJ, Madigan JD, et al. A double-blind randomized trial: Prophylactic vasopressin reduces hypotension after cardiopulmonary bypass. Ann Thorac Surg;75:926–30.

        • Hajjar L.A.
        • Vincent J.L.
        • Barbosa Gomes Galas F.R.
        • et al.
        Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: The VANCS randomized controlled trial.
        Anesthesiology. 2017; 126: 85-93
        • Schmidt H.H.
        NO., CO and .OH. Endogenous soluble guanylyl cyclase-activating factors.
        FEBS Lett. 1992; 307: 102-107
        • Shanmugam G.
        Vasoplegic syndrome—the role of methylene blue.
        Eur J Cardiothorac Surg. 2005; 28: 705-710
        • Wolvetang T.
        • Janse R.
        • Ter Horst M.
        Serotonin syndrome after methylene blue administration during cardiac surgery: A case report and review.
        J Cardiothorac Vasc Anesth. 2016; 30: 1042-1045
        • Kofidis T.
        • Struber M.
        • Wilhelmi M.
        • et al.
        Reversal of severe vasoplegia with single-dose methylene blue after heart transplantation.
        J Thorac Cardiovasc Surg. 2001; 122: 823-824
        • Yiu P.
        • Robin J.
        • Pattison C.W.
        Reversal of refractory hypotension with single-dose methylene blue after coronary artery bypass surgery.
        J Thorac Cardiovasc Surg. 1999; 118: 195-196
        • Levin R.L.
        • Degrange M.A.
        • Bruno G.F.
        • et al.
        Methylene blue reduces mortality and morbidity in vasoplegic patients after cardiac surgery.
        Ann Thorac Surg. 2004; 77: 496-499
        • Leyh R.G.
        • Kofidis T.
        • Struber M.
        • et al.
        Methylene blue: The drug of choice for catecholamine-refractory vasoplegia after cardiopulmonary bypass?.
        J Thorac Cardiovasc Surg. 2003; 125: 1426-1431
        • Maslow A.D.
        • Stearns G.
        • Butala P.
        • et al.
        The hemodynamic effects of methylene blue when administered at the onset of cardiopulmonary bypass.
        Anesth Analg. 2006; 103: 2-8
        • Ozal E.
        • Kuralay E.
        • Yildirim V.
        • et al.
        Preoperative methylene blue administration in patients at high risk for vasoplegic syndrome during cardiac surgery.
        Ann Thorac Surg. 2005; 79: 1615-1619
        • Mehaffey J.H.
        • Johnston L.E.
        • Hawkins R.B.
        • et al.
        Methylene blue for vasoplegic syndrome after cardiac operation: Early administration improves survival.
        Ann Thorac Surg. 2017; 104: 36-41
        • Weiner M.M.
        • Lin H.M.
        • Danforth D.
        • et al.
        Methylene blue is associated with poor outcomes in vasoplegic shock.
        J Cardiothorac Vasc Anesth. 2013; 27: 1233-1238
        • Belletti A.
        • Musu M.
        • Silvetti S.
        • et al.
        Non-adrenergic vasopressors in patients with or at risk for vasodilatory shock: A systematic review and meta-analysis of randomized trials.
        PloS One. 2015; 10: e0142605
        • Sprung C.L.
        • Annane D.
        • Keh D.
        • et al.
        Hydrocortisone therapy for patients with septic shock.
        N Engl J Med. 2008; 358: 111-124
        • Annane D.
        • Sebille V.
        • Charpentier C.
        • et al.
        Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock.
        JAMA. 2002; 288: 862-871
        • Whitlock R.P.
        • Devereaux P.J.
        • Teoh K.H.
        • et al.
        Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): A randomised, double-blind, placebo-controlled trial.
        Lancet. 2015; 386: 1243-1253
        • Dieleman J.M.
        • Nierich A.P.
        • Rosseel P.M.
        • et al.
        Intraoperative high-dose dexamethasone for cardiac surgery: A randomized controlled trial.
        JAMA. 2012; 308: 1761-1767
        • Marik P.E.
        • Khangoora V.
        • Rivera R.
        • et al.
        Hydrocortisone, vitamin C and thiamine for the treatment of severe sepsis and septic shock: A retrospective before-after study.
        Chest. 2017; 151: 1229-1238
        • Burnes M.L.
        • Boettcher B.T.
        • Woehlck H.J.
        • et al.
        Hydroxocobalamin as a rescue treatment for refractory vasoplegic syndrome after prolonged cardiopulmonary bypass.
        J Cardiothorac Vasc Anesth. 2016; 31: 1012-1014
        • Roderique J.D.
        • VanDyck K.
        • Holman B.
        • et al.
        The use of high-dose hydroxocobalamin for vasoplegic syndrome.
        Ann Thorac Surg. 2014; 97: 1785-1786
        • Geraci M.J.
        • McCoy S.L.
        • Aquino M.E.
        Woman with red urine: Hydroxocobalamin-induced chromaturia.
        J Emerg Med. 2012; 43: e207-e209
        • Akinosoglou K.
        • Alexopoulos D.
        Use of antiplatelet agents in sepsis: A glimpse into the future.
        Thromb Res. 2014; 133: 131-138
        • Morelli A.
        • Ertmer C.
        • Rehberg S.
        • et al.
        Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): A randomized, controlled pilot study.
        Crit Care. 2009; 13: R130
        • Morelli A.
        • Ertmer C.
        • Lange M.
        • et al.
        Effects of short-term simultaneous infusion of dobutamine and terlipressin in patients with septic shock: The DOBUPRESS study.
        Br J Anaesth. 2008; 100: 494-503
        • Marks J.A.
        • Pascual J.L.
        Selepressin in septic shock: Sharpening the VASST effects of vasopressin?.
        Crit Care Med. 2014; 42: 1747-1748
        • Chawla L.S.
        • Busse L.
        • Brasha-Mitchell E.
        • et al.
        Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): A pilot study.
        Crit Care. 2014; 18: 534
        • Khanna A.
        • English S.W.
        • Wang X.S.
        • et al.
        Angiotensin II for the treatment of vasodilatory shock.
        N Engl J Med. 2017; 377: 419-430