Advertisement

Enhanced Recovery for Cardiac Surgery

Published:March 01, 2018DOI:https://doi.org/10.1053/j.jvca.2018.01.045
      Enhanced Recovery After Surgery (ERAS® Society, Stockholm, Sweden) programs are developing rapidly in multiple specialties, fueled by the promising outcomes in colorectal surgery. There currently are no Enhanced Recovery After Surgery guidelines for cardiac surgery. The elevated burden of mortality, morbidity, and high resource expenditures associated with cardiac surgery present a tremendous opportunity for enhanced recovery. This narrative review sets out to examine the literature involving enhanced recovery in cardiac surgery and explores additional potential areas of interest.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiothoracic and Vascular Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Enhanced Recovery After Surgery Society. Available at: http://erassociety.org/. Accessed October 15, 2017.

        • Greco M.
        • Capretti G.
        • Beretta L.
        • et al.
        Enhanced recovery program in colorectal surgery: A meta-analysis of randomized controlled trials.
        World J Surg. 2014; 38: 1531-1541
        • Ljungqvist O.
        • Scott M.
        • Fearon K.C.
        Enhanced Recovery After Surgery: A review.
        JAMA Surg. 2017; 152: 292-298
        • Nelson G.
        • Kiyang L.N.
        • Crumley E.T.
        • et al.
        Implementation of Enhanced Recovery After Surgery (ERAS) across a provincial healthcare system: The ERAS Alberta Colorectal surgery experience.
        World J Surg. 2016; 40: 1092-1103
        • Varadhan K.K.
        • Neal K.R.
        • Dejong C.H.
        • et al.
        The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: A meta-analysis of randomized controlled trials.
        Clin Nutr. 2010; 29: 434-440
        • Zhuang C.L.
        • Ye X.Z.
        • Zhang X.D.
        • et al.
        Enhanced recovery after surgery programs versus traditional care for colorectal surgery: A meta-analysis of randomized controlled trials.
        Dis Colon Rectum. 2013; 56: 667-678
        • Nicholson A.
        • Lowe M.C.
        • Parker J.
        • et al.
        Systematic review and meta-analysis of enhanced recovery programmes in surgical patients.
        Br J Surg. 2014; 101: 172-188
        • Gustafsson U.O.
        • Hausel J.
        • Thorell A.
        • et al.
        Adherence to the enhanced recovery after surgery protocol and outcomes after colorectal cancer surgery.
        Arch Surg. 2011; 146: 571-577
        • Savaridas T.
        • Serrano-Pedraza I.
        • Khan S.K.
        • et al.
        Reduced medium-term mortality following primary total hip and knee arthroplasty with an enhanced recovery program. A study of 4,500 consecutive procedures.
        Acta Orthop. 2013; 84: 40-43
        • Engelman R.M.
        • Rousou J.A.
        • Flack 3rd, J.E.
        • et al.
        Fast-track recovery of the coronary bypass patient.
        Ann Thorac Surg. 1994; 58: 1742-1746
        • Westaby S.
        • Pillai R.
        • Parry A.
        • et al.
        Does modern cardiac surgery require conventional intensive care?.
        Eur J Cardiothorac Surg. 1993; 7 (discussion 318): 313-318
        • Myles P.S.
        • Daly D.J.
        • Djaiani G.
        • et al.
        A systematic review of the safety and effectiveness of fast-track cardiac anesthesia.
        Anesthesiology. 2003; 99: 982-987
        • Wong W.T.
        • Lai V.K.
        • Chee Y.E.
        • et al.
        Fast-track cardiac care for adult cardiac surgical patients.
        Cochrane Database Syst Rev. 2016; 9 (CD:003587.)
        • Sola M.
        • Ramm C.J.
        • Kolarczyk L.M.
        • et al.
        Application of a multidisciplinary enhanced recovery after surgery pathway to improve patient outcomes after transcatheter aortic valve implantation.
        Am J Cardiol. 2016; 118: 418-423
        • Fleming I.O.
        • Garratt C.
        • Guha R.
        • et al.
        Aggregation of marginal gains in cardiac surgery: Feasibility of a perioperative care bundle for enhanced recovery in cardiac surgical patients.
        J Cardiothorac Vasc Anesth. 2016; 30: 665-670
        • Zaouter C.
        • Imbault J.
        • Labrousse L.
        • et al.
        Association of robotic totally endoscopic coronary artery bypass graft surgery associated with a preliminary cardiac enhanced recovery after surgery program: A retrospective analysis.
        J Cardiothorac Vasc Anesth. 2015; 29: 1489-1497
        • Ho K.Y.
        • Gan T.J.
        • Habib A.S.
        Gabapentin and postoperative pain—a systematic review of randomized controlled trials.
        Pain. 2006; 126: 91-101
        • Peng P.W.
        • Wijeysundera D.N.
        • Li C.C.
        Use of gabapentin for perioperative pain control — a meta-analysis.
        Pain Res Manag. 2007; 12: 85-92
        • De Oliveira Jr, G.S.
        • Almeida M.D.
        • Benzon H.T.
        • et al.
        Perioperative single dose systemic dexamethasone for postoperative pain: A meta-analysis of randomized controlled trials.
        Anesthesiology. 2011; 115: 575-588
        • Subramaniam K.
        • Subramaniam B.
        • Steinbrook R.A.
        Ketamine as adjuvant analgesic to opioids: A quantitative and qualitative systematic review.
        Anesth Analg. 2004; 99 (table of contents): 482-495
        • De Oliveira Jr, G.S.
        • Castro-Alves L.J.
        • Khan J.H.
        • et al.
        Perioperative systemic magnesium to minimize postoperative pain: A meta-analysis of randomized controlled trials.
        Anesthesiology. 2013; 119: 178-190
        • Lysakowski C.
        • Dumont L.
        • Czarnetzki C.
        • et al.
        Magnesium as an adjuvant to postoperative analgesia: A systematic review of randomized trials.
        Anesth Analg. 2007; 104 (table of contents): 1532-1539
        • Ferasatkish R.
        • Dabbagh A.
        • Alavi M.
        • et al.
        Effect of magnesium sulfate on extubation time and acute pain in coronary artery bypass surgery.
        Acta Anaesthesiol Scand. 2008; 52: 1348-1352
        • Vigneault L.
        • Turgeon A.F.
        • Cote D.
        • et al.
        Perioperative intravenous lidocaine infusion for postoperative pain control: A meta-analysis of randomized controlled trials.
        Can J Anaesth. 2011; 58: 22-37
        • Zangrillo A.
        • Bignami E.
        • Biondi-Zoccai G.G.
        • et al.
        Spinal analgesia in cardiac surgery: A meta-analysis of randomized controlled trials.
        J Cardiothorac Vasc Anesth. 2009; 23: 813-821
        • Liu S.S.
        • Block B.M.
        • Wu C.L.
        Effects of perioperative central neuraxial analgesia on outcome after coronary artery bypass surgery: A meta-analysis.
        Anesthesiology. 2004; 101: 153-161
        • D’Ercole F.
        • Arora H.
        • Kumar P.A.
        Paravertebral block for thoracic surgery.
        J Cardiothorac Vasc Anesth. 2017; (October 4 [E-pub ahead of print])
        • Chaney M.A.
        Intrathecal and epidural anesthesia and analgesia for cardiac surgery.
        Anesth Analg. 1997; 84: 1211-1221
        • Yalamuri S.
        • Klinger R.Y.
        • Bullock W.M.
        • et al.
        Pectoral fascial (PECS) I and II blocks as rescue analgesia in a patient undergoing minimally invasive cardiac surgery.
        Reg Anesth Pain Med. 2017; 42: 764-766
        • Khalil A.E.
        • Abdallah N.M.
        • Bashandy G.M.
        • et al.
        Ultrasound-guided serratus anterior plane block versus thoracic epidural analgesia for thoracotomy pain.
        J Cardiothorac Vasc Anesth. 2017; 31: 152-158
        • White P.F.
        • Rawal S.
        • Latham P.
        • et al.
        Use of a continuous local anesthetic infusion for pain management after median sternotomy.
        Anesthesiology. 2003; 99: 918-923
        • Hurley R.W.
        • Cohen S.P.
        • Williams K.A.
        • et al.
        The analgesic effects of perioperative gabapentin on postoperative pain: A meta-analysis.
        Reg Anesth Pain Med. 2006; 31: 237-247
        • Borde D.P.
        • Futane S.S.
        • Asegaonkar B.
        • et al.
        Effect of perioperative pregabalin on postoperative quality of recovery in patients undergoing off-pump coronary artery bypass grafting (OPCABG): A prospective, randomized, double-blind trial.
        J Cardiothorac Vasc Anesth. 2017; 31: 1241-1245
        • Scarci M.
        • Solli P.
        • Bedetti B.
        Enhanced recovery pathway for thoracic surgery in the UK.
        J Thorac Dis. 2016; 8: S78-S83
        • Yang L.
        • Kaye A.D.
        • Venakatesh A.G.
        • et al.
        Enhanced recovery after cardiac surgery: An update on clinical implications.
        Int Anesthesiol Clin. 2017; 55: 148-162
        • Mangano D.T.
        • Siliciano D.
        • Hollenberg M.
        • et al.
        Postoperative myocardial ischemia. Therapeutic trials using intensive analgesia following surgery. The Study of Perioperative Ischemia (SPI) Research Group.
        Anesthesiology. 1992; 76: 342-353
        • Mueller X.M.
        • Tinguely F.
        • Tevaearai H.T.
        • et al.
        Pain location, distribution, and intensity after cardiac surgery.
        Chest. 2000; 118: 391-396
        • Cogan J.
        • Eipe N.
        • Vargas-Schaffer G.
        • et al.
        “CAPS” Cardiac Acute Pain Services-A nationwide survey from Canada.
        J Cardiothorac Vasc Anesth. 2017; 31: 1235-1240
        • Taylor C.P.
        Mechanisms of action of gabapentin.
        Rev Neurol (Paris). 1997; 153: 39-45
        • Hayashida K.
        • DeGoes S.
        • Curry R.
        • et al.
        Gabapentin activates spinal noradrenergic activity in rats and humans and reduces hypersensitivity after surgery.
        Anesthesiology. 2007; 106: 557-562
        • Mathiesen O.
        • Moiniche S.
        • Dahl J.B.
        Gabapentin and postoperative pain: A qualitative and quantitative systematic review, with focus on procedure.
        BMC Anesthesiol. 2006; 7: 6
        • Straube S.
        • Derry S.
        • Moore R.A.
        • et al.
        Single dose oral gabapentin for established acute postoperative pain in adults.
        Cochrane Database Syst Rev. 2010; (CD:008183)
        • Schmidt P.C.
        • Ruchelli G.
        • Mackey S.C.
        • et al.
        Perioperative gabapentinoids: Choice of agent, dose, timing, and effects on chronic postsurgical pain.
        Anesthesiology. 2013; 119: 1215-1221
        • Menda F.
        • Koner O.
        • Sayin M.
        • et al.
        Effects of single-dose gabapentin on postoperative pain and morphine consumption after cardiac surgery.
        J Cardiothorac Vasc Anesth. 2010; 24: 808-813
        • Ziyaeifard M.
        • Mehrabanian M.J.
        • Faritus S.Z.
        • et al.
        Premedication with oral pregabalin for the prevention of acute postsurgical pain in coronary artery bypass surgery.
        Anesth Pain Med. 2015; 5: e24837
        • Elia N.
        • Tramer M.R.
        Ketamine and postoperative pain—a quantitative systematic review of randomised trials.
        Pain. 2005; 113: 61-70
        • Jouguelet-Lacoste J.
        • La Colla L.
        • Schilling D.
        • et al.
        The use of intravenous infusion or single dose of low-dose ketamine for postoperative analgesia: A review of the current literature.
        Pain Med. 2015; 16: 383-403
        • Laskowski K.
        • Stirling A.
        • McKay W.P.
        • et al.
        A systematic review of intravenous ketamine for postoperative analgesia.
        Can J Anaesth. 2011; 58: 911-923
        • Lahtinen P.
        • Kokki H.
        • Hakala T.
        • et al.
        S(+)-ketamine as an analgesic adjunct reduces opioid consumption after cardiac surgery.
        Anesth Analg. 2004; 99: 1295-1301
        • Nesher N.
        • Ekstein M.P.
        • Paz Y.
        • et al.
        Morphine with adjuvant ketamine vs higher dose of morphine alone for immediate postthoracotomy analgesia.
        Chest. 2009; 136: 245-252
        • Welters I.D.
        • Feurer M.K.
        • Preiss V.
        • et al.
        Continuous S-(+)-ketamine administration during elective coronary artery bypass graft surgery attenuates pro-inflammatory cytokine response during and after cardiopulmonary bypass.
        Br J Anaesth. 2011; 106: 172-179
        • Roytblat L.
        • Talmor D.
        • Rachinsky M.
        • et al.
        Ketamine attenuates the interleukin-6 response after cardiopulmonary bypass.
        Anesth Analg. 1998; 87: 266-271
        • Zilberstein G.
        • Levy R.
        • Rachinsky M.
        • et al.
        Ketamine attenuates neutrophil activation after cardiopulmonary bypass.
        Anesth Analg. 2002; 95: 531-536
        • Hudetz J.A.
        • Patterson K.M.
        • Iqbal Z.
        • et al.
        Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass.
        J Cardiothorac Vasc Anesth. 2009; 23: 651-657
        • Hudetz J.A.
        • Iqbal Z.
        • Gandhi S.D.
        • et al.
        Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery.
        Acta Anaesthesiol Scand. 2009; 53: 864-872
        • Waldron N.H.
        • Jones C.A.
        • Gan T.J.
        • et al.
        Impact of perioperative dexamethasone on postoperative analgesia and side-effects: Systematic review and meta-analysis.
        Br J Anaesth. 2013; 110: 191-200
        • Murphy G.S.
        • Whitlock R.P.
        • Gutsche J.T.
        • et al.
        Steroids for adult cardiac surgery with cardiopulmonary bypass: Update on dose and key randomized trials.
        J Cardiothorac Vasc Anesth. 2013; 27: 1053-1059
        • Dieleman J.M.
        • Nierich A.P.
        • Rosseel P.M.
        • et al.
        Intraoperative high-dose dexamethasone for cardiac surgery: A randomized controlled trial.
        JAMA. 2012; 308: 1761-1767
        • Whitlock R.P.
        • Devereaux P.J.
        • Teoh K.H.
        • et al.
        Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): A randomised, double-blind, placebo-controlled trial.
        Lancet. 2015; 386: 1243-1253
        • Herroeder S.
        • Schonherr M.E.
        • De Hert S.G.
        • et al.
        Magnesium—essentials for anesthesiologists.
        Anesthesiology. 2011; 114: 971-993
        • Albrecht E.
        • Kirkham K.R.
        • Liu S.S.
        • et al.
        Peri-operative intravenous administration of magnesium sulphate and postoperative pain: A meta-analysis.
        Anaesthesia. 2013; 68: 79-90
        • Ozcan P.E.
        • Tugrul S.
        • Senturk N.M.
        • et al.
        Role of magnesium sulfate in postoperative pain management for patients undergoing thoracotomy.
        J Cardiothorac Vasc Anesth. 2007; 21: 827-831
        • Steinlechner B.
        • Dworschak M.
        • Birkenberg B.
        • et al.
        Magnesium moderately decreases remifentanil dosage required for pain management after cardiac surgery.
        Br J Anaesth. 2006; 96: 444-449
        • Koppert W.
        • Ostermeier N.
        • Sittl R.
        • et al.
        Low-dose lidocaine reduces secondary hyperalgesia by a central mode of action.
        Pain. 2000; 85: 217-224
        • Hollmann M.W.
        • Durieux M.E.
        Local anesthetics and the inflammatory response: A new therapeutic indication?.
        Anesthesiology. 2000; 93: 858-875
        • Devor M.
        • Wall P.D.
        • Catalan N.
        Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction.
        Pain. 1992; 48: 261-268
        • Woolf C.J.
        • Wiesenfeld-Hallin Z.
        The systemic administration of local anaesthetics produces a selective depression of C-afferent fibre evoked activity in the spinal cord.
        Pain. 1985; 23: 361-374
        • Kranke P.
        • Jokinen J.
        • Pace N.L.
        • et al.
        Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery.
        Cochrane Database Syst Rev. 2015; (CD:009642)
        • Insler S.R.
        • O’Connor M.
        • Samonte A.F.
        • et al.
        Lidocaine and the inhibition of postoperative pain in coronary artery bypass patients.
        J Cardiothorac Vasc Anesth. 1995; 9: 541-546
        • Lee E.H.
        • Lee H.M.
        • Chung C.H.
        • et al.
        Impact of intravenous lidocaine on myocardial injury after off-pump coronary artery surgery.
        Br J Anaesth. 2011; 106: 487-493
        • El-Tahan M.R.
        Role of thoracic epidural analgesia for thoracic surgery and its perioperative effects.
        J Cardiothorac Vasc Anesth. 2017; 31: 1417-1426
        • Chaney M.A.
        Benefits of neuraxial anesthesia in patients undergoing cardiac surgery.
        J Cardiothorac Vasc Anesth. 1997; 11: 808-809
        • Lee T.W.
        • Grocott H.P.
        • Schwinn D.
        • et al.
        High spinal anesthesia for cardiac surgery: Effects on beta-adrenergic receptor function, stress response, and hemodynamics.
        Anesthesiology. 2003; 98: 499-510
        • Ho A.M.
        • Chung D.C.
        • Joynt G.M.
        Neuraxial blockade and hematoma in cardiac surgery: Estimating the risk of a rare adverse event that has not (yet) occurred.
        Chest. 2000; 117: 551-555
        • Hemmerling T.M.
        • Cyr S.
        • Terrasini N.
        Epidural catheterization in cardiac surgery: The 2012 risk assessment.
        Ann Card Anaesth. 2013; 16: 169-177
        • Scarfe A.J.
        • Schuhmann-Hingel S.
        • Duncan J.K.
        • et al.
        Continuous paravertebral block for post-cardiothoracic surgery analgesia: A systematic review and meta-analysis.
        Eur J Cardiothorac Surg. 2016; 50: 1010-1018
        • McDonald S.B.
        • Jacobsohn E.
        • Kopacz D.J.
        • et al.
        Parasternal block and local anesthetic infiltration with levobupivacaine after cardiac surgery with desflurane: The effect on postoperative pain, pulmonary function, and tracheal extubation times.
        Anesth Analg. 2005; 100: 25-32
        • Blanco R.
        The ‘pecs block’: A novel technique for providing analgesia after breast surgery.
        Anaesthesia. 2011; 66: 847-848
        • Blanco R.
        • Fajardo M.
        • Parras Maldonado T.
        Ultrasound description of Pecs II (modified Pecs I): A novel approach to breast surgery.
        Rev Esp Anestesiol Reanim. 2012; 59: 470-475
        • Fujiwara A.
        • Komasawa N.
        • Minami T.
        Pectoral nerves (PECS) and intercostal nerve block for cardiac resynchronization therapy device implantation.
        Springerplus. 2014; 3: 409
        • Blanco R.
        • Parras T.
        • McDonnell J.G.
        • et al.
        Serratus plane block: A novel ultrasound-guided thoracic wall nerve block.
        Anaesthesia. 2013; 68: 1107-1113
        • Madabushi R.
        • Tewari S.
        • Gautam S.K.
        • et al.
        Serratus anterior plane block: A new analgesic technique for post-thoracotomy pain.
        Pain Physician. 2015; 18: E421-E424
        • Mace L.
        An audit of post-operative nausea and vomiting, following cardiac surgery: Scope of the problem.
        Nurs Crit Care. 2003; 8: 187-196
        • Gan T.J.
        • Diemunsch P.
        • Habib A.S.
        • et al.
        Consensus guidelines for the management of postoperative nausea and vomiting.
        Anesth Analg. 2014; 118: 85-113
        • Sawatzky J.A.
        • Rivet M.
        • Ariano R.E.
        • et al.
        Post-operative nausea and vomiting in the cardiac surgery population: Who is at risk?.
        Heart Lung. 2014; 43: 550-554
        • Kogan A.
        • Eidelman L.A.
        • Raanani E.
        • et al.
        Nausea and vomiting after fast-track cardiac anaesthesia.
        Br J Anaesth. 2003; 91: 214-217
        • Shaw A.
        • Raghunathan K.
        Fluid management in cardiac surgery: Colloid or crystalloid?.
        Anesthesiol Clin. 2013; 31: 269-280
        • Rahbari N.N.
        • Zimmermann J.B.
        • Schmidt T.
        • et al.
        Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery.
        Br J Surg. 2009; 96: 331-341
        • Brunkhorst F.M.
        • Engel C.
        • Bloos F.
        • et al.
        Intensive insulin therapy and pentastarch resuscitation in severe sepsis.
        New Engl J Med. 2008; 358: 125-139
        • Karakala N.
        • Raghunathan K.
        • Shaw A.D.
        Intravenous fluids in sepsis: What to use and what to avoid.
        Curr Opin Crit Care. 2013; 19: 537-543
        • Ryhammer P.K.
        • Tang M.
        • Hoffmann-Petersen J.
        • et al.
        Colloids in cardiac surgery-friend or foe?.
        J Cardiothorac Vasc Anesth. 2017; 31: 1639-1648
        • McGee W.T.
        • Raghunathan K.
        Physiologic goal-directed therapy in the perioperative period: The volume prescription for high-risk patients.
        J Cardiothorac Vasc Anesth. 2013; 27: 1079-1086
        • Aya H.D.
        • Cecconi M.
        • Hamilton M.
        • et al.
        Goal-directed therapy in cardiac surgery: A systematic review and meta-analysis.
        Br J Anaesth. 2013; 110: 510-517
        • Spiess B.D.
        Blood transfusion for cardiopulmonary bypass: The need to answer a basic question.
        J Cardiothorac Vasc Anesth. 2002; 16: 535-538
        • Rawn J.
        The silent risks of blood transfusion.
        Curr Opin Anaesthesiol. 2008; 21: 664-668
        • Mazer C.D.
        • Whitlock R.P.
        • Fergusson D.A.
        • et al.
        Restrictive or liberal red-cell transfusion for cardiac surgery.
        N Engl J Med. 2017; 377: 2133-2144
        • Murphy G.J.
        • Pike K.
        • Rogers C.A.
        • et al.
        Liberal or restrictive transfusion after cardiac surgery.
        N Engl J Med. 2015; 372: 997-1008
        • Ferraris V.A.
        • Brown J.R.
        • et al.
        • Society of Thoracic Surgeons Blood Conservation Guideline Task Force
        2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines.
        Ann Thorac Surg. 2011; 91: 944-982
        • Alghamdi A.A.
        • Albanna M.J.
        • Guru V.
        • et al.
        Does the use of erythropoietin reduce the risk of exposure to allogeneic blood transfusion in cardiac surgery? A systematic review and meta-analysis.
        J Card Surg. 2006; 21: 320-326
        • Karkouti K.
        • Wijeysundera D.N.
        • Beattie W.S.
        • et al.
        Risk associated with preoperative anemia in cardiac surgery: A multicenter cohort study.
        Circulation. 2008; 117: 478-484
        • Esnaola N.F.
        • Cole D.J.
        Perioperative normothermia during major surgery: Is it important?.
        Advances Surg. 2011; 45: 249-263
        • Frank S.M.
        • Fleisher L.A.
        • Breslow M.J.
        • et al.
        Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial.
        JAMA. 1997; 277: 1127-1134
        • Kurz A.
        • Sessler D.I.
        • Lenhardt R.
        Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group.
        New Engl J Med. 1996; 334: 1209-1215
        • Moslemi-Kebria M.
        • El-Nashar S.A.
        • Aletti G.D.
        • et al.
        Intraoperative hypothermia during cytoreductive surgery for ovarian cancer and perioperative morbidity.
        Obstet Gynecol. 2012; 119: 590-596
        • Rajagopalan S.
        • Mascha E.
        • Na J.
        • et al.
        The effects of mild perioperative hypothermia on blood loss and transfusion requirement.
        Anesthesiology. 2008; 108: 71-77
        • Greason K.L.
        • Kim S.
        • Suri R.M.
        • et al.
        Hypothermia and operative mortality during on-pump coronary artery bypass grafting.
        J Thorac Cardiovasc Surg. 2014; 148: 2712-2718
        • Ho K.M.
        • Tan J.A.
        Benefits and risks of maintaining normothermia during cardiopulmonary bypass in adult cardiac surgery: A systematic review.
        Cardiovasc Ther. 2011; 29: 260-279
        • Engelman R.
        • Baker R.A.
        • Likosky D.S.
        • et al.
        The Society of Thoracic Surgeons, the Society of Cardiovascular Anesthesiologists, and the American Society of ExtraCorporeal Technology: Clinical practice guidelines for cardiopulmonary bypass—temperature management during cardiopulmonary bypass.
        Ann Thorac Surg. 2015; 100: 748-757
        • Koster S.
        • Hensens A.G.
        • Schuurmans M.J.
        • et al.
        Consequences of delirium after cardiac operations.
        Ann Thorac Surg. 2012; 93: 705-711
        • Saczynski J.S.
        • Marcantonio E.R.
        • Quach L.
        • et al.
        Cognitive trajectories after postoperative delirium.
        New Engl J Med. 2012; 367: 30-39
        • Brown C.Ht
        • Laflam A.
        • Max L.
        • et al.
        The impact of delirium after cardiac surgical procedures on postoperative resource use.
        Ann Thorac Surg. 2016; 101: 1663-1669
        • Hollinger A.
        • Siegemund M.
        • Goettel N.
        • et al.
        Postoperative delirium in cardiac surgery: An unavoidable menace?.
        J Cardothorac Vasc Anesth. 2015; 29: 1677-1687
        • Tse L.
        • Schwarz S.K.
        • Bowering J.B.
        • et al.
        Incidence of and risk factors for delirium after cardiac surgery at a quaternary care center: A retrospective cohort study.
        J Cardothorac Vasc Anesth. 2015; 29: 1472-1479
        • Evans A.S.
        • Weiner M.M.
        • Arora R.C.
        • et al.
        Current approach to diagnosis and treatment of delirium after cardiac surgery.
        Ann Cardiac Anaesth. 2016; 19: 328-337
        • Norkiene I.
        • Ringaitiene D.
        • Kuzminskaite V.
        • et al.
        Incidence and risk factors of early delirium after cardiac surgery.
        BioMed Res Int. 2013; 2013: 323491
        • Rolfson D.B.
        • McElhaney J.E.
        • Rockwood K.
        • et al.
        Incidence and risk factors for delirium and other adverse outcomes in older adults after coronary artery bypass graft surgery.
        Can J Cardiol. 1999; 15: 771-776
        • Rudolph J.L.
        • Jones R.N.
        • Levkoff S.E.
        • et al.
        Derivation and validation of a preoperative prediction rule for delirium after cardiac surgery.
        Circulation. 2009; 119: 229-236
        • Inouye S.K.
        • Bogardus Jr, S.T.
        • Charpentier P.A.
        • et al.
        A multicomponent intervention to prevent delirium in hospitalized older patients.
        New Engl J Med. 1999; 340: 669-676
        • Tse L.
        • Schwarz S.K.
        • Bowering J.B.
        • et al.
        Pharmacological risk factors for delirium after cardiac surgery: A review.
        Curr Neuropharmacol. 2012; 10: 181-196
        • Djaiani G.
        • Silverton N.
        • Fedorko L.
        • et al.
        Dexmedetomidine versus propofol sedation reduces delirium after cardiac surgery: A randomized controlled trial.
        Anesthesiology. 2016; 124: 362-368
        • Maldonado J.R.
        • Wysong A.
        • van der Starre P.J.
        • et al.
        Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery.
        Psychosomatics. 2009; 50: 206-217
        • Riker R.R.
        • Shehabi Y.
        • Bokesch P.M.
        • et al.
        Dexmedetomidine vs midazolam for sedation of critically ill patients: A randomized trial.
        JAMA. 2009; 301: 489-499
        • Tagarakis G.I.
        • Voucharas C.
        • Tsolaki F.
        • et al.
        Ondasetron versus haloperidol for the treatment of postcardiotomy delirium: A prospective, randomized, double-blinded study.
        J Cardiothorac Surg. 2012; 7: 25
        • American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults
        Postoperative delirium in older adults: Best practice statement from the American Geriatrics Society.
        J Am Coll Surg. 2015; 220 (e131): 136-148
        • Brower R.G.
        Consequences of bed rest.
        Crit Care Med. 2009; 37: S422-S428
        • Harper C.M.
        • Lyles Y.M.
        Physiology and complications of bed rest.
        J Am Geriatr Soc. 1988; 36: 1047-1054
        • Adler J.
        • Malone D.
        Early mobilization in the intensive care unit: A systematic review.
        Cardiopulm Phys Ther J. 2012; 23: 5-13
        • Andreasen J.J.
        • Sorensen G.V.
        • Abrahamsen E.R.
        • et al.
        Early chest tube removal following cardiac surgery is associated with pleural and/or pericardial effusions requiring invasive treatment.
        Eur J Cardiothorac Surg. 2016; 49: 288-292
        • Ramos Dos Santos P.M.
        • Aquaroni Ricci N.
        • Aparecida Bordignon Suster E.
        • et al.
        Effects of early mobilisation in patients after cardiac surgery: A systematic review.
        Physiotherapy. 2017; 103: 1-12
        • Thourani V.H.
        • Badhwar V.
        • Shahian D.M.
        • et al.
        The Society of Thoracic Surgeons adult cardiac surgery database: 2017 update on research.
        Ann Thorac Surg. 2017; 104: 22-28
        • ERAS Compliance Group
        The impact of enhanced recovery protocol compliance on elective colorectal cancer resection: Results from an international registry.
        Ann Surg. 2015; 261: 1153-1159
        • Simpson J.C.
        • Moonesinghe S.R.
        • Grocott M.P.
        • et al.
        Enhanced recovery from surgery in the UK: An audit of the enhanced recovery partnership programme 2009-2012.
        Br J Anaesth. 2015; 115: 560-568
        • Fiore Jr, J.F.
        • Bejjani J.
        • Conrad K.
        • et al.
        Systematic review of the influence of enhanced recovery pathways in elective lung resection.
        J Thorac Cardiovasc Surg. 2016; 151: 708-715