Advertisement

Intraoperative and Early Postoperative Management of Patients Undergoing Minimally Invasive Left Ventricular Assist Device Implantation

      Minimally invasive approaches for left ventricular assist device (LVAD) implantation have grown in popularity and have many potential advantages, including less bleeding, shorter recovery time, and improved postoperative right ventricular function compared with traditional implantation. Centrifugal flow LVADs are easily implanted via a minimally invasive approach. In this article, the authors review intraoperive considerations for minimally invasive LVAD implantation and hemodynamic management principles for patients with centrifugal flow LVADs.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiothoracic and Vascular Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chen-Scarabelli C
        • Saravolatz L
        • Hirsh B
        • et al.
        Dilemmas in end-stage heart failure.
        J Geriatr Cardiol. 2015; 12: 57-65
        • Ahmed A
        • Aronow WS
        • Fleg JL
        Higher New York Heart Association classes and increased mortality and hospitalization in patients with heart failure and preserved left ventricular function.
        Am Heart J. 2006; 151: 444-450
        • Kormos RL
        • Cowger J
        • Pagani FD
        • et al.
        The Society of Thoracic Surgeons Intermacs database annual report: Evolving indications, outcomes, and scientific partnerships.
        J Heart Lung Transplant. 2019; 38: 114-126
        • Long JW
        Advanced mechanical circulatory support with the HeartMate left ventricular assist device in the year 2000.
        Ann Thorac Surg. 2001; 71 (discussion S83-4): S176-82
        • Pagani FD
        • Long JW
        • Dembitsky WP
        • et al.
        Improved mechanical reliability of the HeartMate XVE left ventricular assist system.
        Ann Thorac Surg. 2006; 82: 1413-1418
        • Rogers JG
        • Aaronson KD
        • Boyle AJ
        • et al.
        Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients.
        J Am Coll Cardiol. 2010; 55: 1826-1834
        • Kirklin JK
        • Naftel DC
        • Pagani FD
        • et al.
        Pump thrombosis in the Thoratec HeartMate II device: An update analysis of the INTERMACS Registry.
        J Heart Lung Transplant. 2015; 34: 1515-1526
        • Morgan JA
        • Paone G
        • Nemeh HW
        • et al.
        Gastrointestinal bleeding with the HeartMate II left ventricular assist device.
        J Heart Lung Transplant. 2012; 31: 715-718
        • Riebandt J
        • Sandner S
        • Mahr S
        • et al.
        Minimally invasive Thoratec Heartmate II implantation in the setting of severe thoracic aortic calcification.
        Ann Thorac Surg. 2013; 96: 1094-1096
        • Pasrija C
        • Sawan MA
        • Sorensen E
        • et al.
        Less invasive left ventricular assist device implantation may reduce right ventricular failure.
        Interact Cardiovasc Thorac Surg. 2019; 29: 592-598
        • Mehra MR
        • Naka Y
        • Uriel N
        • et al.
        A fully magnetically levitated circulatory pump for advanced heart failure.
        N Engl J Med. 2017; 376: 440-450
        • Mehra MR
        • Uriel N
        • Naka Y
        • et al.
        A fully magnetically levitated left ventricular assist device - final report.
        N Engl J Med. 2019; 380: 1618-1627
        • Milano CA
        • Rogers JG
        • Tatooles AJ
        • et al.
        HVAD: The ENDURANCE supplemental trial.
        JACC Heart Fail. 2018; 6: 792-802
        • Rogers JG
        • Pagani FD
        • Tatooles AJ
        • et al.
        Intrapericardial left ventricular assist device for advanced heart failure.
        N Engl J Med. 2017; 376: 451-460
        • McGee Jr, E
        • Danter M
        • Strueber M
        • et al.
        Evaluation of a lateral thoracotomy implant approach for a centrifugal-flow left ventricular assist device: The LATERAL clinical trial.
        J Heart Lung Transplant. 2019; 38: 344-351
        • Mohite PN
        • Sabashnikov A
        • Raj B
        • et al.
        Minimally invasive left ventricular assist device implantation: A comparative study.
        Artif Organs. 2018; 42: 1125-1131
        • Attisani M
        • Centofanti P
        • Baronetto A
        • et al.
        HeartMate 3 left ventricular assist device minimally invasive off-pump implantation.
        Multimed Man Cardiothorac Surg. 2018; : 2018
        • Ricklefs M
        • Heimeshoff J
        • Hanke JS
        • et al.
        The influence of less invasive ventricular assist device implantation on renal function.
        J Thorac Dis. 2018; 10: S1737-S1742
        • Wert L
        • Chatterjee A
        • Dogan G
        • et al.
        Minimally invasive surgery improves outcome of left ventricular assist device surgery in cardiogenic shock.
        J Thorac Dis. 2018; 10: S1696-S1702
        • Borlaug BA
        • Reddy YNV
        The role of the pericardium in heart failure: Implications for pathophysiology and treatment.
        JACC Heart Fail. 2019; 7: 574-585
        • Carrozzini M
        • Bejko J
        • Guariento A
        • et al.
        Minimally invasive implantation of continuous flow left ventricular assist devices: The evolution of surgical techniques in a single-center experience.
        Artif Organs. 2019; 43: E41-E52
        • Maltais S
        • Anwer LA
        • Tchantchaleishvili V
        • et al.
        Left lateral thoracotomy for centrifugal continuous-flow left ventricular assist device placement: An analysis from the Mechanical Circulatory Support Research Network.
        Asaio J. 2018; 64: 715-720
      1. Ozer T, Guna y D, Hancer H, et al. Transition from conventional technique to less invasive approach in left ventricular assist device implantations. ASAIO J.https://doi.org/10.1097/MAT.0000000000001123. Accessed January 15th, 2020. [E-pub ahead of print].

        • Ayers B
        • Sagebin F
        • Wood K
        • et al.
        Complete sternal-sparing approach improves outcomes for left ventricular assist device implantation in patients with history of prior sternotomy.
        Innovations (Phila). 2020; 15: 51-56
        • Gosev I
        • Wood K
        • Ayers B
        • et al.
        Implantation of a fully magnetically levitated left ventricular assist device using a sternal-sparing surgical technique.
        J Heart Lung Transplant. 2020; 39: 37-44
        • Shah A
        • Kaczorowski DJ
        Minimally invasive durable mechanical circulatory support: Don’t hit them while they’re down.
        J Thorac Cardiovasc Surg. 2019; 157: e269-e270
        • Schmitto JD
        • Molitoris U
        • Haverich A
        • et al.
        Implantation of a centrifugal pump as a left ventricular assist device through a novel, minimized approach: Upper hemisternotomy combined with anterolateral thoracotomy.
        J Thorac Cardiovasc Surg. 2012; 143: 511-513
        • Ricklefs M
        • Hanke JS
        • Dogan G
        • et al.
        Less invasive surgical approaches for left ventricular assist device implantation.
        Semin Thorac Cardiovasc Surg. 2018; 30: 1-6
        • Schmitto JD
        • Krabatsch T
        • Damme L
        • et al.
        Less invasive HeartMate 3 left ventricular assist device implantation.
        J Thorac Dis. 2018; 10: S1692-S1695
        • Riebandt J
        • Wiedemann D
        • Laufer G
        • et al.
        Sternotomy sparing Thoratec HeartMate 3 implantation via bilateral minithoracotomy.
        Innovations (Phila). 2018; 13: 74-76
        • Carrozzini M
        • Bejko J
        • Gerosa G
        • et al.
        Bilateral mini-thoracotomy approach for minimally invasive implantation of HeartMate 3.
        Artif Organs. 2019; 43: 593-595
        • Wood KL
        • Ayers BC
        • Sagebin F
        • et al.
        Complete sternal-sparing HeartMate 3 implantation: A case series of 10 consecutive patients.
        Ann Thorac Surg. 2019; 107: 1160-1165
        • Saeed D
        • Sixt S
        • Albert A
        • et al.
        Minimally invasive off-pump implantation of HeartMate 3 left ventricular assist device.
        J Thorac Cardiovasc Surg. 2016; 152: 1446-1447
        • Karaca N
        • Sahutoglu C
        • Kocabas S
        • et al.
        Anesthetic management for left ventricular sssist device implantation without using cardiopulmonary bypass: Case series.
        Transplant Proc. 2015; 47: 1503-1506
        • Hillebrand J
        • Hoffmeier A
        • Djie Tiong Tjan T
        • et al.
        Minimally invasive implantation of HeartWare assist device and simultaneous tricuspid valve reconstruction through partial upper sternotomy.
        Artif Organs. 2017; 41: 418-423
        • Schaefer A
        • Treede H
        • Bernhardt A
        • et al.
        Concomitant minimally invasive HVAD and transapical aortic valve implantation.
        Asaio J. 2015; 61: 209-212
        • Quan W
        • Shah A
        • Feller E
        • et al.
        Transcatheter closure of atrial septostomy facilitates minimally invasive left ventricular assist device implantation.
        J Thorac Cardiovasc Surg. 2019; 158: e7-e9
      2. Kar B, Prathipati P, Jumean M, et al. Management of aortic insufficiency using transcatheter aortic valve replacement in patients with left ventricular assist device support. ASAIO J.https://doi.org/10.1097/MAT.0000000000001053. Accessed January 15th, 2020. [E-pub ahead of print].

        • Maltais S
        • Davis ME
        • Haglund N
        Minimally invasive and alternative approaches for long-term LVAD placement: The Vanderbilt strategy.
        Ann Cardiothorac Surg. 2014; 3: 563-569
        • Gurses E
        • Sungurtekin H
        • Tomatir E
        • et al.
        Assessing propofol induction of anesthesia dose using bispectral index analysis.
        Anesth Analg. 2004; 98 (table of contents): 128-131
        • Rusch D
        • Arndt C
        • Eberhart L
        • et al.
        Bispectral index to guide induction of anesthesia: A randomized controlled study.
        BMC Anesthesiol. 2018; 18: 66
        • Joshi B
        • Ono M
        • Brown C
        • et al.
        Predicting the limits of cerebral autoregulation during cardiopulmonary bypass.
        Anesth Analg. 2012; 114: 503-510
        • Vretzakis G
        • Georgopoulou S
        • Stamoulis K
        • et al.
        Cerebral oximetry in cardiac anesthesia.
        J Thorac Dis. 2014; 6: S60-9
        • Kang G
        • Ha R
        • Banerjee D
        Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation.
        J Heart Lung Transplant. 2016; 35: 67-73
        • Rong LQ
        • Rahouma M
        • Neuburger PJ
        • et al.
        Use of pulmonary artery pulsatility index in cardiac surgery.
        J Cardiothorac Vasc Anesth. 2020; 65: 37-73
        • Gudejko MD
        • Gebhardt BR
        • Zahedi F
        • et al.
        Intraoperative hemodynamic and echocardiographic measurements associated with severe right ventricular failure after left ventricular assist device implantation.
        Anesth Analg. 2019; 128: 25-32
        • Schenk S
        • McCarthy PM
        • Blackstone EH
        • et al.
        Duration of inotropic support after left ventricular assist device implantation: Risk factors and impact on outcome.
        J Thorac Cardiovasc Surg. 2006; 131: 447-454
        • Uriel N
        • Imamura T
        • Sayer G
        • et al.
        High transpulmonary artery gradient obtained at the time of left ventricular assist device implantation negatively affects survival after cardiac transplantation.
        J Card Fail. 2019; 25: 777-784
        • Viquerat CE
        • Daly P
        • Swedberg K
        • et al.
        Endogenous catecholamine levels in chronic heart failure. Relation to the severity of hemodynamic abnormalities.
        Am J Med. 1985; 78: 455-460
        • Benowitz NL
        • Meister W
        Pharmacokinetics in patients with cardiac failure.
        Clin Pharmacokinet. 1976; 1: 389-405
        • Adachi YU
        • Satomoto M
        • Higuchi H
        • et al.
        The determinants of propofol induction time in anesthesia.
        Korean J Anesthesiol. 2013; 65: 121-126
        • Sprung J
        • Schuetz SM
        • Stewart RW
        • et al.
        Effects of ketamine on the contractility of failing and nonfailing human heart muscles in vitro.
        Anesthesiology. 1998; 88: 1202-1210
        • Cotton BA
        • Guillamondegui OD
        • Fleming SB
        • et al.
        Increased risk of adrenal insufficiency following etomidate exposure in critically injured patients.
        Arch Surg. 2008; 143 (discussion 7): 62-67
        • Bruder EA
        • Ball IM
        • Ridi S
        • et al.
        Single induction dose of etomidate versus other induction agents for endotracheal intubation in critically ill patients.
        Cochrane Database Syst Rev. 2015; 1 (CD010225)
        • Sunshine JE
        • Deem S
        • Weiss NS
        • et al.
        Etomidate, adrenal function, and mortality in critically ill patients.
        Respir Care. 2013; 58: 639-646
        • Goodchild CS
        • Serrao JM
        Propofol-induced cardiovascular depression: Science and art.
        Br J Anaesth. 2015; 115: 641-642
        • Kawakubo A
        • Fujigaki T
        • Uresino H
        • et al.
        Comparative effects of etomidate, ketamine, propofol, and fentanyl on myocardial contractility in dogs.
        J Anesth. 1999; 13: 77-82
        • Lepouse C
        • Lautner CA
        • Liu L
        • et al.
        Emergence delirium in adults in the post-anaesthesia care unit.
        Br J Anaesth. 2006; 96: 747-753
        • Landoni G
        • Lomivorotov VV
        • Nigro Neto C
        • et al.
        Volatile anesthetics versus total intravenous anesthesia for cardiac surgery.
        N Engl J Med. 2019; 380: 1214-1225
        • Topilsky Y
        • Hasin T
        • Oh JK
        • et al.
        Echocardiographic variables after left ventricular assist device implantation associated with adverse outcome.
        Circ Cardiovasc Imaging. 2011; 4: 648-661
        • Stainback RF
        • Estep JD
        • Agler DA
        • et al.
        Echocardiography in the management of patients with left ventricular assist devices: Recommendations from the American Society of Echocardiography.
        J Am Soc Echocardiogr. 2015; 28: 853-909
        • Lang RM
        • Badano LP
        • Mor-Avi V
        • et al.
        Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
        J Am Soc Echocardiogr. 2015; 28 (e14): 1-39
        • Markley RR
        • Ali A
        • Potfay J
        • et al.
        Echocardiographic evaluation of the right heart.
        J Cardiovasc Ultrasound. 2016; 24: 183-190
        • Vivo RP
        • Cordero-Reyes AM
        • Qamar U
        • et al.
        Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device.
        J Heart Lung Transplant. 2013; 32: 792-799
        • Grant AD
        • Smedira NG
        • Starling RC
        • et al.
        Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation.
        J Am Coll Cardiol. 2012; 60: 521-528
        • Meluzin J
        • Spinarova L
        • Dusek L
        • et al.
        Prognostic importance of the right ventricular function assessed by Doppler tissue imaging.
        Eur J Echocardiogr. 2003; 4: 262-271
        • Alfirevic A
        • Makarova N
        • Kelava M
        • et al.
        Predicting right ventricular failure after LVAD implantation: Role of tricuspid valve annulus displacement.
        J Cardiothorac Vasc Anesth. 2020; 34: 1204-1210
        • Zoghbi WA
        • Adams D
        • Bonow RO
        • et al.
        Recommendations for noninvasive evaluation of native valvular regurgitation: A report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance.
        J Am Soc Echocardiogr. 2017; 30: 303-371
        • Zoghbi WA
        • Enriquez-Sarano M
        • Foster E
        • et al.
        Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography.
        J Am Soc Echocardiogr. 2003; 16: 777-802
        • de Marchi SF
        • Windecker S
        • Aeschbacher BC
        • et al.
        Influence of left ventricular relaxation on the pressure half time of aortic regurgitation.
        Heart. 1999; 82: 607-613
        • Park SJ
        • Liao KK
        • Segurola R
        • et al.
        Management of aortic insufficiency in patients with left ventricular assist devices: A simple coaptation stitch method (Park’s stitch).
        J Thorac Cardiovasc Surg. 2004; 127: 264-266
        • Atkins BZ
        • Hashmi ZA
        • Ganapathi AM
        • et al.
        Surgical correction of aortic valve insufficiency after left ventricular assist device implantation.
        J Thorac Cardiovasc Surg. 2013; 146: 1247-1252
        • Gin KG
        • Huckell VF
        • Pollick C
        Femoral vein delivery of contrast medium enhances transthoracic echocardiographic detection of patent foramen ovale.
        J Am Coll Cardiol. 1993; 22: 1994-2000
        • Woods TD
        • Patel A
        A critical review of patent foramen ovale detection using saline contrast echocardiography: When bubbles lie.
        J Am Soc Echocardiogr. 2006; 19: 215-222
        • Severgnini P
        • Selmo G
        • Lanza C
        • et al.
        Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function.
        Anesthesiology. 2013; 118: 1307-1321
        • Futier E
        • Constantin JM
        • Paugam-Burtz C
        • et al.
        A trial of intraoperative low-tidal-volume ventilation in abdominal surgery.
        N Engl J Med. 2013; 369: 428-437
        • Guldner A
        • Kiss T
        • Serpa Neto A
        • et al.
        Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: A comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers.
        Anesthesiology. 2015; 123: 692-713
        • Park M
        • Ahn HJ
        Driving pressure-guided ventilation: Reply.
        Anesthesiology. 2019; 131: 1194-1195
        • Chi D
        • Chen C
        • Shi Y
        • et al.
        Ventilation during cardiopulmonary bypass for prevention of respiratory insufficiency: A meta-analysis of randomized controlled trials.
        Medicine (Baltimore). 2017; 96: e6454
        • Haddad F
        • Hunt SA
        • Rosenthal DN
        • et al.
        Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle.
        Circulation. 2008; 117: 1436-1448
        • Hoffman D
        • Sisto D
        • Frater RW
        • et al.
        Left-to-right ventricular interaction with a noncontracting right ventricle.
        J Thorac Cardiovasc Surg. 1994; 107: 1496-1502
        • Naeije R
        • Badagliacca R
        The overloaded right heart and ventricular interdependence.
        Cardiovasc Res. 2017; 113: 1474-1485
        • Mondal S
        • Dawood M
        • Bandyopadhyay D
        • et al.
        Transcatheter aortic valve replacement: A potential option for aortic insufficiency management in patients with left ventricular assist device.
        Int J Cardiol Heart Vasc. 2020; 26: 100425
        • da Rocha ESJG
        • Meyer AL
        • Eifert S
        • et al.
        Influence of aortic valve opening in patients with aortic insufficiency after left ventricular assist device implantation.
        Eur J Cardiothorac Surg. 2016; 49: 784-787
        • Shah NR
        • Cevik C
        • Hernandez A
        • et al.
        Transthoracic echocardiography of the HeartWare left ventricular assist device.
        J Card Fail. 2012; 18: 745-748
        • Estep JD
        • Stainback RF
        • Little SH
        • et al.
        The role of echocardiography and other imaging modalities in patients with left ventricular assist devices.
        JACC Cardiovasc Imaging. 2010; 3: 1049-1064
        • Jain A
        • Rohrer B
        • Gebhardt B
        • et al.
        Left ventricular assist device thrombosis is associated with an increase in the systolic-to-diastolic velocity ratio measured at the inflow and outflow cannulae.
        J Cardiothorac Vasc Anesth. 2017; 31: 497-504
        • Sparrow CT
        • LaRue SJ
        • Schilling JD
        Intersection of pulmonary hypertension and right ventricular dysfunction in patients on left ventricular assist device support: Is there a role for pulmonary vasodilators?.
        Circ Heart Fail. 2018; 11: e004255
        • Kilic A
        • Katz JN
        • Joseph SM
        • et al.
        Changes in pulmonary artery pressure before and after left ventricular assist device implantation in patients utilizing remote haemodynamic monitoring.
        ESC Heart Fail. 2019; 6: 138-145
      3. Medtronic. Heartware ventricular assist system instructions for use. Available at: http://www.heartware.com/sites/default/files/uploads/docs/ifu00001_rev_15.pdf. Accessed September 25, 2019.

        • Rich JD
        • Burkhoff D
        HVAD flow waveform morphologies: Theoretical foundation and implications for clinical practice.
        Asaio J. 2017; 63: 526-535
      4. Thoratec. Heartmate 3 left ventricular assist system instructions for use. Available at:https://www.accessdata.fda.gov/cdrh_docs/pdf16/P160054C.pdf

        • Soucy KG
        • Koenig SC
        • Giridharan GA
        • et al.
        Defining pulsatility during continuous-flow ventricular assist device support.
        J Heart Lung Transplant. 2013; 32: 581-587
        • Slaughter MS
        • Rogers JG
        • Milano CA
        • et al.
        Advanced heart failure treated with continuous–flow left ventricular assist device.
        N Engl J Med. 2009; 361: 2241-2251
        • Matthews JC
        • Koelling TM
        • Pagani FD
        • et al.
        The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates.
        J Am Coll Cardiol. 2008; 51: 2163-2172
        • Atluri P
        • Goldstone AB
        • Fairman AS
        • et al.
        Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era.
        Ann Thorac Surg. 2013; 96 (discussion 63-4): 857-863
        • Houston BA
        • Kalathiya RJ
        • Hsu S
        • et al.
        Right ventricular afterload sensitivity dramatically increases after left ventricular assist device implantation: A multi-center hemodynamic analysis.
        J Heart Lung Transplant. 2016; 35: 868-876
        • Moon MR
        • Castro LJ
        • DeAnda A
        • et al.
        Right ventricular dynamics during left ventricular assistance in closed-chest dogs.
        Ann Thorac Surg. 1993; 56 (discussion 66-7): 54-66
        • Meineri M
        • Van Rensburg AE
        • Vegas A
        Right ventricular failure after LVAD implantation: Prevention and treatment.
        Best Pract Res Clin Anaesthesiol. 2012; 26: 217-229
        • Kochav SM
        • Flores RJ
        • Truby LK
        • et al.
        Prognostic impact of pulmonary artery pulsatility index (PAPi) in patients with advanced heart failure: Insights from the ESCAPE trial.
        J Card Fail. 2018; 24: 453-459
        • Denault AY
        • Haddad F
        • Jacobsohn E
        • et al.
        Perioperative right ventricular dysfunction.
        Curr Opin Anaesthesiol. 2013; 26: 71-81
        • Perez-Casares A
        • Cesar S
        • Brunet-Garcia L
        • et al.
        Echocardiographic evaluation of pericardial effusion and cardiac tamponade.
        Front Pediatr. 2017; 5: 79
        • Mazer CD
        • Whitlock RP
        • Fergusson DA
        • et al.
        Restrictive or liberal red-cell transfusion for cardiac surgery.
        N Engl J Med. 2017; 377: 2133-2144
        • Duke HN
        • Stedeford RD
        Pulmonary vasomotor responses to epinephrine and norepinephrine in the cat. Influence of the sympathetic nervous system.
        Circ Res. 1960; 8: 640-648
        • Light RB
        • Ali J
        • Breen P
        • et al.
        The pulmonary vascular effects of dopamine, dobutamine, and isoproterenol in unilobar pulmonary edema in dogs.
        J Surg Res. 1988; 44: 26-35
        • Rong LQ
        • Rahouma M
        • Abouarab A
        • et al.
        Intravenous and inhaled milrinone in adult cardiac surgery patients: A pairwise and network meta-analysis.
        J Cardiothorac Vasc Anesth. 2019; 33: 663-673
        • Bousvaros GA
        Effects of norepinephrine on human pulmonary circulation.
        Br Heart J. 1962; 24: 738-744
        • Kwak YL
        • Lee CS
        • Park YH
        • et al.
        The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension.
        Anaesthesia. 2002; 57: 9-14
        • Deshpande SP
        • Mazzeffi MA
        • Strauss E
        • et al.
        Prostacyclins in cardiac surgery: Coming of age.
        Semin Cardiothorac Vasc Anesth. 2018; 22: 306-323
        • Gebhard CE
        • Rochon A
        • Cogan J
        • et al.
        Acute right ventricular failure in cardiac surgery during cardiopulmonary bypass separation: A retrospective case series of 12 years’ experience with intratracheal milrinone administration.
        J Cardiothorac Vasc Anesth. 2019; 33: 651-660
        • Schraufnagel DP
        • Elgharably H
        • Siddiqi S
        • et al.
        Value of perioperative inhaled epoprostenol with low tidal volume ventilation for complex endocarditis surgery.
        J Card Surg. 2019; 34: 676-683
        • Groves DS
        • Blum FE
        • Huffmyer JL
        • et al.
        Effects of early inhaled epoprostenol therapy on pulmonary artery pressure and blood loss during LVAD placement.
        J Cardiothorac Vasc Anesth. 2014; 28: 652-660
        • Sabato LA
        • Salerno DM
        • Moretz JD
        • et al.
        Inhaled pulmonary vasodilator therapy for management of right ventricular dysfunction after left ventricular assist device placement and cardiac transplantation.
        Pharmacotherapy. 2017; 37: 944-955
        • Fitzpatrick 3rd, JR
        • Frederick JR
        • Hiesinger W
        • et al.
        Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device.
        J Thorac Cardiovasc Surg. 2009; 137: 971-977
        • Mondal NK
        • Sorensen EN
        • Pham SM
        • et al.
        Systemic inflammatory response syndrome in end-stage heart failure patients following continuous-flow left ventricular assist device implantation: Differences in plasma redox status and leukocyte activation.
        Artif Organs. 2016; 40: 434-443
        • Kettner J
        • Holek M
        • Franekova J
        • et al.
        Procalcitonin dynamics after long-term ventricular assist device implantation.
        Heart Lung Circ. 2017; 26: 599-603
        • Chow JH
        • Abuelkasem E
        • Sankova S
        • et al.
        Reversal of vasodilatory shock: Current perspectives on conventional, rescue, and emerging vasoactive agents for the treatment of shock.
        Anesth Analg. 2020; 130: 15-30
        • Walker BR
        • Haynes Jr, J
        • Wang HL
        • et al.
        Vasopressin-induced pulmonary vasodilation in rats.
        Am J Physiol. 1989; 257: H415-22
        • Hajjar LA
        • Vincent JL
        • Barbosa Gomes Galas FR
        • et al.
        Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: The VANCS randomized controlled trial.
        Anesthesiology. 2017; 126: 85-93
        • Nordlander M
        • Sjoquist PO
        • Ericsson H
        • et al.
        Pharmacodynamic, pharmacokinetic and clinical effects of clevidipine, an ultrashort-acting calcium antagonist for rapid blood pressure control.
        Cardiovasc Drug Rev. 2004; 22: 227-250
        • Sokouti M
        • Aghdam BA
        • Golzari SE
        • et al.
        A comparative study of postoperative pulmonary complications using fast track regimen and conservative analgesic treatment: A randomized clinical trial.
        Tanaffos. 2011; 10: 12-19
        • Kumar K
        • Kirksey MA
        • Duong S
        • et al.
        A review of opioid-sparing modalities in perioperative pain management: Methods to decrease opioid use postoperatively.
        Anesth Analg. 2017; 125: 1749-1760
        • Manchikanti L
        • Falco FJ
        • Benyamin RM
        • et al.
        Assessment of bleeding risk of interventional techniques: A best evidence synthesis of practice patterns and perioperative management of anticoagulant and antithrombotic therapy.
        Pain Physician. 2013; 16: SE261-318
        • Khalil AE
        • Abdallah NM
        • Bashandy GM
        • et al.
        Ultrasound-guided serratus anterior plane block versus thoracic epidural analgesia for thoracotomy pain.
        J Cardiothorac Vasc Anesth. 2017; 31: 152-158
        • Blanco R
        • Parras T
        • McDonnell JG
        • et al.
        Serratus plane block: A novel ultrasound-guided thoracic wall nerve block.
        Anaesthesia. 2013; 68: 1107-1113
        • Daga V
        • Narayanan MK
        • Dedhia JD
        • et al.
        Cadaveric feasibility study on the use of ultrasound contrast to assess spread of injectate in the serratus anterior muscle plane.
        Saudi J Anaesth. 2016; 10: 198-201
        • Saad FS
        • El Baradie SY
        • Abdel Aliem MAW
        • et al.
        Ultrasound-guided serratus anterior plane block versus thoracic paravertebral block for perioperative analgesia in thoracotomy.
        Saudi J Anaesth. 2018; 12: 565-570
        • Bhoi D
        • Selvam V
        • Yadav P
        • et al.
        Comparison of 2 different techniques of serratus anterior plane block: A clinical experience.
        J Anaesthesiol Clin Pharmacol. 2018; 34: 251-253
        • Thiruvenkatarajan V
        • Cruz Eng H
        • Adhikary SD
        An update on regional analgesia for rib fractures.
        Curr Opin Anaesthesiol. 2018; 31: 601-607
        • Kelava M
        • Alfirevic A
        • Bustamante S
        • et al.
        Regional anesthesia in cardiac surgery: An overview of fascial plane chest wall blocks.
        Anesth Analg. 2020; (. Accessed January 15th, 2020. [E-pub ahead of print])
        • Yalamuri S
        • Klinger RY
        • Bullock WM
        • et al.
        Pectoral fascial (PECS) I and II blocks as rescue analgesia in a patient undergoing minimally invasive cardiac surgery.
        Reg Anesth Pain Med. 2017; 42: 764-766
        • Versyck B
        • van Geffen GJ
        • Chin KJ
        Analgesic efficacy of the pecs II block: A systematic review and meta-analysis.
        Anaesthesia. 2019; 74: 663-673
        • Forero M
        • Adhikary SD
        • Lopez H
        • et al.
        The erector spinae plane block: A novel analgesic technique in thoracic neuropathic pain.
        Reg Anesth Pain Med. 2016; 41: 621-627
        • Kot P
        • Rodriguez P
        • Granell M
        • et al.
        The erector spinae plane block: A narrative review.
        Korean J Anesthesiol. 2019; 72: 209-220
        • Nagaraja PS
        • Ragavendran S
        • Singh NG
        • et al.
        Comparison of continuous thoracic epidural analgesia with bilateral erector spinae plane block for perioperative pain management in cardiac surgery.
        Ann Card Anaesth. 2018; 21: 323-327
        • Kessler P
        • Steinfeldt T
        • Gogarten W
        • et al.
        [Peripheral regional anesthesia in patients under general anesthesia: Risk assessment with respect to parasthesia, injection pain and nerve damage].
        Anaesthesist. 2013; 62: 483-488
        • Gorlinger K
        • Bergmann L
        • Dirkmann D
        Coagulation management in patients undergoing mechanical circulatory support.
        Best Pract Res Clin Anaesthesiol. 2012; 26: 179-198
        • Spanier TB
        • Chen JM
        • Oz MC
        • et al.
        Time-dependent cellular population of textured-surface left ventricular assist devices contributes to the development of a biphasic systemic procoagulant response.
        J Thorac Cardiovasc Surg. 1999; 118: 404-413
        • Toeg H
        • Ruel M
        • Haddad H
        Anticoagulation strategies for left ventricular assist devices.
        Curr Opin Cardiol. 2015; 30: 192-196
        • Sorensen EN
        • Voorhees HJ
        • Dees LM
        • et al.
        Individualized antithrombotic therapy in Heartware HVAD recipients.
        Asaio J. 2019; 65: 29-35
        • Pollari F
        • Fischlein T
        • Fittkau M
        • et al.
        Anticoagulation with apixaban in a patient with a left ventricular assist device and gastrointestinal bleeding: A viable alternative to warfarin?.
        J Thorac Cardiovasc Surg. 2016; 151: e79-81