Advertisement

The Year in Coagulation: Selected Highlights from 2020

Published:March 02, 2021DOI:https://doi.org/10.1053/j.jvca.2021.02.057
      This is the second annual review in the Journal of Cardiothoracic and Vascular Anesthesia to cover highlights in coagulation for cardiac surgery. The goal of this article is to provide readers with a focused summary from the literature of the prior year's most important coagulation topics. In 2020, this included a discussion covering allogeneic transfusion, antiplatelet and anticoagulant therapy, factor concentrates, coagulation testing, mechanical circulatory support, and the effects of coronavirus disease 2019.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiothoracic and Vascular Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mazzeffi MA
        • Patel PA
        • Bolliger D
        • et al.
        The year in coagulation: Selected highlights from 2019.
        J Cardiothorac Vasc Anesth. 2020; 34: 1745-1754
        • Shander A
        • Goodnough LT.
        Can blood transfusion be not only ineffective, but also injurious?.
        Ann Thorac Surg. 2014; 97: 11-14
        • Shander A
        • Javidroozi M
        • Ozawa S
        • et al.
        What is really dangerous: Anaemia or transfusion?.
        Br J Anaesth. 2011; 107: i41-i59
        • Hajjar LA
        • Vincent JL
        • Galas FR
        • et al.
        Transfusion requirements after cardiac surgery: The TRACS randomized controlled trial.
        JAMA. 2010; 304: 1559-1567
        • Mazer CD
        • Whitlock RP
        • Fergusson DA
        • et al.
        Restrictive or liberal red-cell transfusion for cardiac surgery.
        N Engl J Med. 2017; 377: 2133-2144
        • Koch CG
        • Li L
        • Duncan AI
        • et al.
        Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting.
        Crit Care Med. 2006; 34: 1608-1616
        • Koch CG
        • Li L
        • Duncan AI
        • et al.
        Transfusion in coronary artery bypass grafting is associated with reduced long-term survival.
        Ann Thorac Surg. 2006; 81: 1650-1657
        • Surgenor SD
        • Kramer RS
        • Olmstead EM
        • et al.
        The association of perioperative red blood cell transfusions and decreased long-term survival after cardiac surgery.
        Anesth Analg. 2009; 108: 1741-1746
        • Ming Y
        • Liu J
        • Zhang F
        • et al.
        Transfusion of red blood cells, fresh frozen plasma, or platelets is associated with mortality and infection after cardiac surgery in a dose-dependent manner.
        Anesth Analg. 2020; 130: 488-497
        • Abukhodair AW
        • Alqarni MS
        • Bukhari ZM
        • et al.
        Association between post-operative infection and blood transfusion in cardiac surgery.
        Cureus. 2020; 12: e8985
        • Karkouti K.
        Transfusion and risk of acute kidney injury in cardiac surgery.
        Br J Anaesth. 2012; 109: i29-i38
        • Rasmussen SR
        • Kandler K
        • Nielsen RV
        • et al.
        Association between transfusion of blood products and acute kidney injury following cardiac surgery.
        Acta Anaesthesiol Scand. 2020; 64: 1397-1404
        • Smith MM
        • Kor DJ
        • Frank RD
        • et al.
        Intraoperative plasma transfusion volumes and outcomes in cardiac surgery.
        J Cardiothorac Vasc Anesth. 2020; 34: 1446-1456
        • van Hout FM
        • Hogervorst EK
        • Rosseel PM
        • et al.
        Does a platelet transfusion independently affect bleeding and adverse outcomes in cardiac surgery?.
        Anesthesiology. 2017; 126: 441-449
        • Yanagawa B
        • Ribeiro R
        • Lee J
        • et al.
        Platelet transfusion in cardiac surgery: A systematic review and meta-analysis.
        Ann Thorac Surg. 2021; 111: 607-614
        • Agarwal S
        • Abdelmotieleb M.
        Viscoelastic testing in cardiac surgery.
        Transfusion. 2020; 60: S52-S60
        • Flint AWJ
        • Bailey M
        • Reid CM
        • et al.
        Preoperative identification of cardiac surgery patients at risk of receiving a platelet transfusion: The Australian Cardiac Surgery Platelet Transfusion (ACSePT) risk prediction tool.
        Transfusion. 2020; 60: 2272-2283
        • Irving AH
        • Harris A
        • Petrie D
        • et al.
        Impact of patient blood management guidelines on blood transfusions and patient outcomes during cardiac surgery.
        J Thorac Cardiovasc Surg. 2020; 160 (437-45.e20)
        • Bates ER.
        Net adverse clinical events with antiplatelet therapy in acute coronary syndromes.
        JAMA. 2020; 324: 1613-1615
        • Steg PG
        • Bhatt DL.
        Is there really a benefit to net clinical benefit in testing antithrombotics?.
        Circulation. 2018; 137: 1429-1431
        • Wallentin L
        • Becker RC
        • Budaj A
        • et al.
        Ticagrelor versus clopidogrel in patients with acute coronary syndromes.
        N Engl J Med. 2009; 361: 1045-1057
        • You SC
        • Rho Y
        • Bikdeli B
        • et al.
        Association of ticagrelor vs clopidogrel with net adverse clinical events in patients with acute coronary syndrome undergoing percutaneous coronary intervention.
        JAMA. 2020; 324: 1640-1650
        • Johnston SC
        • Amarenco P
        • Denison H
        • et al.
        Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA.
        N Engl J Med. 2020; 383: 207-217
        • Hayden AM
        • Arora L
        • Hobbs RA
        • et al.
        The use of cangrelor infusions after endovascular aortic repair with prophylactic lumbar drain placement.
        J Cardiothorac Vasc Anesth. 2020 Nov 29; ([E-pub ahead of print])
        • Ando G
        • Costa F.
        Double or triple antithrombotic therapy after coronary stenting and atrial fibrillation: A systematic review and meta-analysis of randomized clinical trials.
        Int J Cardiol. 2020; 302: 95-102
        • Badjatiya A
        • Rao SV.
        Advances in antiplatelet and anticoagulant therapies for NSTE-ACS.
        Curr Cardiol Rep. 2019; 21: 3
        • Kumbhani DJ
        • Cannon CP
        • Beavers CJ
        • et al.
        2020 ACC expert consensus decision pathway for anticoagulant and antiplatelet therapy in patients with atrial fibrillation or venous thromboembolism undergoing percutaneous coronary intervention or with atherosclerotic cardiovascular disease: A report of the American College of Cardiology Solution Set Oversight Committee.
        J Am Coll Cardiol. 2021; 77: 629-658
        • Luca F
        • Giubilato S
        • Fusco SAD
        • et al.
        The combination of oral anticoagulant and antiplatelet therapies: Stay one step ahead.
        J Cardiovasc Pharmacol Ther. 2020; 25: 391-398
        • Bolliger D
        • Fassl J
        • Erdoes G.
        How to manage the perioperative patient on combined anticoagulant and antiplatelet therapy: Comments on the 2020 ACC Consensus Decision Pathway.
        J Cardiothorac Vasc Anesth. 2021 Jan 29; ([E-pub ahead of print])
        • Nijenhuis VJ
        • Brouwer J
        • Delewi R
        • et al.
        Anticoagulation with or without clopidogrel after transcatheter aortic-valve implantation.
        N Engl J Med. 2020; 382: 1696-1707
        • Brouwer J
        • Nijenhuis VJ
        • Delewi R
        • et al.
        Aspirin with or without clopidogrel after transcatheter aortic-valve implantation.
        N Engl J Med. 2020; 383: 1447-1457
        • Erdoes G
        • Koster A
        • Ortmann E
        • et al.
        A European consensus statement on the use of four-factor prothrombin complex concentrate for cardiac and non-cardiac surgical patients.
        Anaesthesia. 2021; 76: 381-392
        • Freisinger E
        • Gerss J
        • Makowski L
        • et al.
        Current use and safety of novel oral anticoagulants in adults with congenital heart disease: Results of a nationwide analysis including more than 44 000 patients.
        Eur Heart J. 2020; 41: 4168-4177
        • Erdoes G
        • Martinez Lopez De Arroyabe B
        • Bolliger D
        • et al.
        International consensus statement on the peri-operative management of direct oral anticoagulants in cardiac surgery.
        Anaesthesia. 2018; 73: 1535-1545
        • Tomaselli GF
        • Mahaffey KW
        • Cuker A
        • et al.
        2020 ACC expert consensus decision pathway on management of bleeding in patients on oral anticoagulants: A report of the American College of Cardiology Solution Set Oversight Committee.
        J Am Coll Cardiol. 2020; 76: 594-622
        • Erdoes G
        • Birschmann I
        • Nagler M
        • et al.
        Andexanet alfa-induced heparin resistance: When anticoagulation really remains reversed.
        J Cardiothorac Vasc Anesth. 2021; 31: 908-909
        • Apostel H
        • Winckers K
        • Bidar E
        • et al.
        Successful antithrombin administration in andexanet alfa-associated heparin resistance.
        J Cardiothorac Vasc Anesth. 2021; 35: 904-907
        • Eche IM
        • Elsamadisi P
        • Wex N
        • et al.
        Intraoperative unfractionated heparin unresponsiveness during endovascular repair of a ruptured abdominal aortic aneurysm following administration of andexanet alfa for the reversal of rivaroxaban.
        Pharmacotherapy. 2019; 39: 861-865
        • Iba T
        • Levy JH
        • Levi M
        • et al.
        Coagulopathy of coronavirus disease 2019.
        Crit Care Med. 2020; 48: 1358-1364
        • Levi M
        • Thachil J
        • Iba T
        • et al.
        Coagulation abnormalities and thrombosis in patients with COVID-19.
        Lancet Haematol. 2020; 7: e438-e440
        • Chow JH
        • Khanna AK
        • Kethireddy S
        • et al.
        Aspirin use is associated with decreased mechanical ventilation, ICU admission, and in-hospital mortality in hospitalized patients with COVID-19.
        Anesth Analg. 2020 Oct 21; ([E-pub ahead of print])
        • Sivaloganathan H
        • Ladikou EE
        • Chevassut T.
        COVID-19 mortality in patients on anticoagulants and antiplatelet agents.
        Br J Haematol. 2020; 190: e192-e195
        • Grottke O
        • Mallaiah S
        • Karkouti K
        • et al.
        Fibrinogen supplementation and its indications.
        Semin Thromb Hemost. 2020; 46: 38-49
        • Gibbs NM
        • Weightman WM.
        Diagnostic accuracy of viscoelastic point-of-care identification of hypofibrinogenaemia in cardiac surgical patients: A systematic review.
        Anaesth Intensive Care. 2020; 48: 339-353
        • Kozek-Langenecker SA
        • Ahmed AB
        • Afshari A
        • et al.
        Management of severe perioperative bleeding: Guidelines from the European Society of Anaesthesiology: First update 2016.
        Eur J Anaesthesiol. 2017; 34: 332-395
        • Görlinger K
        • Dirkmann D
        • Hanke AA
        • et al.
        First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: A retrospective, single-center cohort study.
        Anesthesiology. 2011; 115: 1179-1191
        • Karlsson M
        • Ternström L
        • Hyllner M
        • et al.
        Prophylactic fibrinogen infusion in cardiac surgery patients: Effects on biomarkers of coagulation, fibrinolysis, and platelet function.
        Clin Appl Thromb Hemost. 2011; 17: 396-404
        • Ranucci M
        • Baryshnikova E
        • Crapelli GB
        • et al.
        Randomized, double-blinded, placebo-controlled trial of fibrinogen concentrate supplementation after complex cardiac surgery.
        J Am Heart Assoc. 2015; 4e002066
        • Kwapisz MM
        • Kent B
        • DiQuinzio C
        • et al.
        The prophylactic use of fibrinogen concentrate in high-risk cardiac surgery.
        Acta Anaesthesiol Scand. 2020; 64: 602-612
        • Charbonneau H
        • Pasquie M
        • Mayeur N.
        Preoperative plasma fibrinogen level and transfusion in cardiac surgery: A biphasic correlation.
        Interact Cardiovasc Thorac Surg. 2020; 31: 622-625
        • Mion S
        • Duval B
        • Besnard T
        • et al.
        U-shaped relationship between pre-operative plasma fibrinogen levels and severe peri-operative bleeding in cardiac surgery.
        Eur J Anaesthesiol. 2020; 37: 889-897
        • Carless PA
        • Henry DA
        • Moxey AJ
        • et al.
        Cell salvage for minimising perioperative allogeneic blood transfusion.
        Cochrane Database Syst Rev. 2010; 3CD001888
        • Wang G
        • Bainbridge D
        • Martin J
        • et al.
        The efficacy of an intraoperative cell saver during cardiac surgery: A meta-analysis of randomized trials.
        Anesth Analg. 2009; 109: 320-330
        • Côté CL
        • Yip AM
        • MacLeod JB
        • et al.
        Efficacy of intraoperative cell salvage in decreasing perioperative blood transfusion rates in first-time cardiac surgery patients: A retrospective study.
        Can J Surg. 2016; 59: 330-336
        • Son K
        • Yamada T
        • Tarao K
        • et al.
        Effects of cardiac surgery and salvaged blood transfusion on coagulation function assessed by thromboelastometry.
        J Cardiothorac Vasc Anesth. 2020; 34: 237-282
        • Bolliger D
        • Tanaka KA.
        More is not always better: Effects of cell salvage in cardiac surgery on postoperative fibrinogen concentrations.
        J Cardiothorac Vasc Anesth. 2020; 34: 2383-2385
        • Waldén K
        • Jeppsson A
        • Nasic S
        • et al.
        Fibrinogen concentrate to cardiac surgery patients with ongoing bleeding does not increase the risk of thromboembolic complications or death.
        Thromb Haemost. 2020; 120: 384-391
        • Fassl J
        • Lurati Buse G
        • Filipovic M
        • et al.
        Perioperative administration of fibrinogen does not increase adverse cardiac and thromboembolic events after cardiac surgery.
        Br J Anaesth. 2015; 114: 225-234
        • Maeda T
        • Miyata S
        • Usui A
        • et al.
        Safety of fibrinogen concentrate and cryoprecipitate in cardiovascular surgery: Multicenter database study.
        J Cardiothorac Vasc Anesth. 2019; 33: 321-327
        • Iso T
        • Rizk E
        • Harris JE
        • et al.
        Viable hemostasis obtained with prothrombin complex concentrate in patients who refuse standard allogeneic blood transfusion and undergo complex cardiac surgery: A case series.
        A A Pract. 2020; 14: e01276
        • van den Brink DP
        • Wirtz MR
        • Neto AS
        • et al.
        Effectiveness of prothrombin complex concentrate for the treatment of bleeding: A systematic review and meta-analysis.
        J Thromb Haemost. 2020; 18: 2457-2467
        • Green L
        • Roberts N
        • Cooper J
        • et al.
        Prothrombin complex concentrate vs. fresh frozen plasma in adult patients undergoing heart surgery - a pilot randomised controlled trial (PROPHESY trial).
        Anaesthesia. 2020 Dec 7; ([E-pub ahead of print])
        • Ngo A
        • Masel D
        • Cahill C
        • et al.
        Blood banking and transfusion medicine challenges during the COVID-19 pandemic.
        Clin Lab Med. 2020; 40: 587-601
        • D'Agostino RS
        • Jacobs JP
        • Badhwar V
        • et al.
        The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2018 update on outcomes and quality.
        Ann Thorac Surg. 2018; 105: 15-23
        • Serraino GF
        • Murphy GJ.
        Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: Updated systematic review and meta-analysis.
        Br J Anaesth. 2017; 118: 823-833
        • Santos AS
        • Noronha K
        • Andrade MV.
        Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery.
        Response to Br J Anaesth. 2017; 118 (Br J Anaesth 2020;124:e1-2): 823-833
        • Meco M
        • Montisci A
        • Giustiniano E
        • et al.
        Viscoelastic blood tests use in adult cardiac surgery: Meta-analysis, meta-regression, and trial sequential analysis.
        J Cardiothorac Vasc Anesth. 2020; 34: 119-127
        • Avgerinos DV
        • DeBois W
        • Salemi A.
        Blood conservation strategies in cardiac surgery: More is better.
        Eur J Cardiothorac Surg. 2014; 46: 865-870
        • Raphael J
        • Mazer CD
        • Subramani S
        • et al.
        Society of Cardiovascular Anesthesiologists clinical practice improvement advisory for management of perioperative bleeding and hemostasis in cardiac surgery patients.
        Anesth Analg. 2019; 129: 1209-1221
        • Boer C
        • Meesters MI
        • Milojevic M
        • et al.
        2017 EACTS/EACTA guidelines on patient blood management for adult cardiac surgery.
        J Cardiothorac Vasc Anesth. 2018; 32: 88-120
        • Despotis GJ
        • Filos KS
        • Zoys TN
        • et al.
        Factors associated with excessive postoperative blood loss and hemostatic transfusion requirements: A multivariate analysis in cardiac surgical patients.
        Anesth Analg. 1996; 82: 13-21
        • Rubens FD
        • Boodhwani M
        • Mesana T
        • et al.
        The cardiotomy trial: A randomized, double-blind study to assess the effect of processing of shed blood during cardiopulmonary bypass on transfusion and neurocognitive function.
        Circulation. 2007; 116: I89-I97
        • Rollins KE
        • Trim NL
        • Luddington RJ
        • et al.
        Coagulopathy associated with massive cell salvage transfusion following aortic surgery.
        Perfusion. 2012; 27: 30-33
        • Adam EH
        • Funke M
        • Zacharowski K
        • et al.
        Impact of intraoperative cell salvage on blood coagulation factor concentrations in patients undergoing cardiac surgery.
        Anesth Analg. 2020; 130: 1389-1395
        • Buys WF
        • Buys M
        • Levin AI.
        Reinfusate heparin concentrations produced by two autotransfusion systems.
        J Cardiothorac Vasc Anesth. 2017; 31: 90-98
        • Barile L
        • Fominskiy E
        • Di Tomasso N
        • et al.
        Acute normovolemic hemodilution reduces allogeneic red blood cell transfusion in cardiac surgery: A systematic review and meta-analysis of randomized trials.
        Anesth Analg. 2017; 124: 743-752
        • Goldberg J
        • Paugh TA
        • Dickinson TA
        • et al.
        Greater volume of acute normovolemic hemodilution may aid in reducing blood transfusions after cardiac surgery.
        Ann Thorac Surg. 2015; 100 (discussion 1587): 1581-1587
        • Henderson RA
        • Mazzeffi MA
        • Strauss ER
        • et al.
        Impact of intraoperative high-volume autologous blood collection on allogeneic transfusion during and after cardiac surgery: A propensity score matched analysis.
        Transfusion. 2019; 59: 2023-2029
        • Smith BB
        • Nuttall GA
        • Mauermann WJ
        • et al.
        Coagulation test changes associated with acute normovolemic hemodilution in cardiac surgery.
        J Card Surg. 2020; 35: 1043-1050
        • Henderson RA
        • Judd M
        • Strauss ER
        • et al.
        Hematologic evaluation of intraoperative autologous blood collection and allogeneic transfusion in cardiac surgery.
        Transfusion. 2021 Jan 10; ([E-pub ahead of print])
        • Helm RE
        • Klemperer JD
        • Rosengart TK
        • et al.
        Intraoperative autologous blood donation preserves red cell mass but does not decrease postoperative bleeding.
        Ann Thorac Surg. 1996; 62: 1431-1441
        • Ranucci M
        • Baryshnikova E.
        Fibrinogen supplementation after cardiac surgery: Insights from the Zero-Plasma trial (ZEPLAST).
        Br J Anaesth. 2016; 116: 618-623
        • Williams B
        • McNeil J
        • Crabbe A
        • et al.
        Practical use of thromboelastometry in the management of perioperative coagulopathy and bleeding.
        Transfus Med Rev. 2017; 31: 11-25
        • Ogawa S
        • Szlam F
        • Bolliger D
        • et al.
        The impact of hematocrit on fibrin clot formation assessed by rotational thromboelastometry.
        Anesth Analg. 2012; 115: 16-21
        • Naik BI
        • Tanaka K
        • Sudhagoni RG
        • et al.
        Prediction of hypofibrinogenemia and thrombocytopenia at the point of care with the Quantra QPlus System.
        Thromb Res. 2021; 197: 88-93
        • Kuiper G
        • van Egmond LT
        • Henskens YMC
        • et al.
        Shifts of transfusion demand in cardiac surgery after implementation of rotational thromboelastometry-guided transfusion protocols: Analysis of the HEROES-CS (HEmostasis Registry of patiEntS in Cardiac Surgery) observational, prospective open cohort database.
        J Cardiothorac Vasc Anesth. 2019; 33: 307-317
        • Groves DS
        • Welsby IJ
        • Naik BI
        • et al.
        Multicenter evaluation of the Quantra QPlus system in adult patients undergoing major surgical procedures.
        Anesth Analg. 2020; 130: 899-909
        • Zghaibe W
        • Scheuermann S
        • Munting K
        • et al.
        Clinical utility of the Quantra® point-of-care haemostasis analyser during urgent cardiac surgery.
        Anaesthesia. 2020; 75: 366-373
        • Ranucci M
        • Baryshnikova E.
        Sensitivity of viscoelastic tests to platelet function.
        J Clin Med. 2020; 9: 189
        • Rössler J
        • Meybohm P
        • Spahn DR
        • et al.
        Improving decision making through presentation of viscoelastic tests as a 3D animated blood clot: The Visual Clot.
        Anaesthesia. 2020; 75: 1059-1069
        • Han H
        • Yang L
        • Liu R
        • et al.
        Prominent changes in blood coagulation of patients with SARS-CoV-2 infection.
        Clin Chem Lab Med. 2020; 58: 1116-1120
        • Madathil RJ
        • Tabatabai A
        • Rabin J
        • et al.
        Thromboelastometry and D-dimer elevation in coronavirus-2019.
        J Cardiothorac Vasc Anesth. 2020; 34: 3495-3496
        • Baron DM
        • Franchini M
        • Goobie SM
        • et al.
        Patient blood management during the COVID-19 pandemic: A narrative review.
        Anaesthesia. 2020; 75: 1105-1113
        • Hranjec T
        • Estreicher M
        • Rogers B
        • et al.
        Integral use of thromboelastography with platelet mapping to guide appropriate treatment, avoid complications, and improve survival of patients with coronavirus disease 2019-related coagulopathy.
        Crit Care Explor. 2020; 2: e0287
        • Carlson LA
        • Maynes EJ
        • Choi JH
        • et al.
        Characteristics and outcomes of gastrointestinal bleeding in patients with continuous-flow left ventricular assist devices: A systematic review.
        Artif Organs. 2020; 44: 1150-1161
        • Wilson TJ
        • Baran DA
        • Herre JM
        • et al.
        Gastrointestinal bleeding rates in left ventricular assist device population reduced with octreotide utilization.
        ASAIO J. 2020 Dec 18; ([E-pub ahead of print])
        • Mehra MR
        • Uriel N
        • Naka Y
        • et al.
        A fully magnetically levitated left ventricular assist device - final report.
        N Engl J Med. 2019; 380: 1618-1627
        • Nei SD
        • Wieruszewski PM
        • Orzel LA
        • et al.
        Tirofiban in suspected left ventricular assist device pump thrombosis.
        ASAIO J. 2020; 66: 886-889
        • Dimitrov K
        • Maier J
        • Sandner S
        • et al.
        Thrombolysis as first-line therapy for Medtronic/HeartWare HVAD left ventricular assist device thrombosis.
        Eur J Cardiothorac Surg. 2020; 58: 1182-1191
        • Parikh VY
        • Parikh UM
        • Moctezuma-Ramirez A
        • et al.
        Factor Xa inhibitors in patients with continuous-flow left ventricular assist devices.
        Gen Thorac Cardiovasc Surg. 2020; 68: 1278-1284
        • Freund A
        • Jobs A
        • Lurz P
        • et al.
        Frequency and impact of bleeding on outcome in patients with cardiogenic shock.
        JACC Cardiovasc Interv. 2020; 13: 1182-1193
        • Stokes JW
        • Gannon WD
        • Sherrill WH
        • et al.
        Bleeding, thromboembolism, and clinical outcomes in venovenous extracorporeal membrane oxygenation.
        Crit Care Explor. 2020; 2: e0267
        • Fong KM
        • Au SY
        • Ng GWY
        • et al.
        Bleeding, thrombosis and transfusion in patients on ECMO: A retrospective study in a tertiary center in Hong Kong.
        Int J Artif Organs. 2020; 391398820965584
        • Popugaev KA
        • Bakharev SA
        • Kiselev KV
        • et al.
        Clinical and pathophysiologic aspects of ECMO-associated hemorrhagic complications.
        PLoS One. 2020; 15e0240117
        • Ellouze O
        • Abbad X
        • Constandache T
        • et al.
        Risk factors of bleeding in patients undergoing venoarterial extracorporeal membrane oxygenation.
        Ann Thorac Surg. 2021; 111: 623-628
        • Olson SR
        • Murphree CR
        • Zonies D
        • et al.
        Thrombosis and bleeding in extracorporeal membrane oxygenation (ECMO) without anticoagulation: A systematic review.
        ASAIO J. 2021; 67: 290-296
        • Kaseer H
        • Soto-Arenall M
        • Sanghavi D
        • et al.
        Heparin vs bivalirudin anticoagulation for extracorporeal membrane oxygenation.
        J Card Surg. 2020; 35: 779-786
        • Panigada M
        • Cucino A
        • Spinelli E
        • et al.
        A randomized controlled trial of antithrombin supplementation during extracorporeal membrane oxygenation.
        Crit Care Med. 2020; 48: 1636-1644
        • Willems A
        • Roeleveld PP
        • Labarinas S
        • et al.
        Anti-Xa versus time-guided anticoagulation strategies in extracorporeal membrane oxygenation: A systematic review and meta-analysis.
        Perfusion. 2020; 267659120952982
        • Sun W
        • Wang S
        • Chen Z
        • et al.
        Impact of high mechanical shear stress and oxygenator membrane surface on blood damage relevant to thrombosis and bleeding in a pediatric ECMO circuit.
        Artif Organs. 2020; 44: 717-726
        • Mazzeffi M
        • Tanaka K
        • Wu YF
        • et al.
        Platelet surface GPIbalpha, activated GPIIb-IIIa, and P-selectin levels in adult veno-arterial extracorporeal membrane oxygenation patients.
        Platelets. 2020; : 1-7
        • Kalbhenn J
        • Schlagenhauf A
        • Rosenfelder S
        • et al.
        Acquired von Willebrand syndrome and impaired platelet function during venovenous extracorporeal membrane oxygenation: Rapid onset and fast recovery.
        J Heart Lung Transplant. 2018; 37: 985-991
        • Mazzeffi M
        • Hasan S
        • Abuelkasem E
        • et al.
        Von Willebrand factor-GP1balpha interactions in venoarterial extracorporeal membrane oxygenation patients.
        J Cardiothorac Vasc Anesth. 2019; 33: 2125-2132
        • Mazzeffi M
        • Bathula A
        • Tabatabai A
        • et al.
        Von Willebrand factor concentrate administration for acquired von Willebrand syndrome-related bleeding during adult extracorporeal membrane oxygenation.
        J Cardiothorac Vasc Anesth. 2021; 35: 882-887
      1. Extracorporeal Life Support Organization. ECMO in COVID-19. Available at: https://www.elso.org/COVID19.aspx. Accessed January 5, 2021.

        • Mazzeffi MA
        • Chow JH
        • Tanaka K.
        COVID-19 associated hypercoagulability: Manifestations, mechanisms, and management.
        Shock. 2020 Sep 2; ([E-pub ahead of print])
        • Middeldorp S
        • Coppens M
        • van Haaps TF
        • et al.
        Incidence of venous thromboembolism in hospitalized patients with COVID-19.
        J Thromb Haemost. 2020; 18: 1995-2002
        • Nahum J
        • Morichau-Beauchant T
        • Daviaud F
        • et al.
        Venous thrombosis among critically ill patients with coronavirus disease 2019 (COVID-19).
        JAMA Netw Open. 2020; 3e2010478
        • Ranucci M
        • Ballotta A
        • Di Dedda U
        • et al.
        The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome.
        J Thromb Haemost. 2020; 18: 1747-1751
        • Lodigiani C
        • Iapichino G
        • Carenzo L
        • et al.
        Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy.
        Thromb Res. 2020; 191: 9-14
        • Tabatabai A
        • Rabin J
        • Menaker J
        • et al.
        Factor VIII and functional protein C activity in critically ill patients with coronavirus disease 2019: A case series.
        A A Pract. 2020; 14: e01236
        • Varga Z
        • Flammer AJ
        • Steiger P
        • et al.
        Endothelial cell infection and endotheliitis in COVID-19.
        Lancet. 2020; 395: 1417-1418
        • Ackermann M
        • Verleden SE
        • Kuehnel M
        • et al.
        Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19.
        N Engl J Med. 2020; 383: 120-128
        • Beyls C
        • Huette P
        • Abou-Arab O
        • et al.
        Extracorporeal membrane oxygenation for COVID-19-associated severe acute respiratory distress syndrome and risk of thrombosis.
        Br J Anaesth. 2020; 125: e260-e262
        • Guo Z
        • Sun L
        • Li B
        • et al.
        Anticoagulation management in severe coronavirus disease 2019 patients on extracorporeal membrane oxygenation.
        J Cardiothorac Vasc Anesth. 2021; 35: 38-97
        • Bemtgen X
        • Zotzmann V
        • Benk C
        • et al.
        Thrombotic circuit complications during venovenous extracorporeal membrane oxygenation in COVID-19.
        J Thromb Thrombolysis. 2021; 51: 301-307
        • Hu D
        • Liu K
        • Li B
        • et al.
        Large intracardiac thrombus in a COVID-19 patient treated with prolonged extracorporeal membrane oxygenation implantation.
        Eur Heart J. 2020; 41: 3104-3105
        • Chen Z
        • Mondal NK
        • Zheng S
        • et al.
        High shear induces platelet dysfunction leading to enhanced thrombotic propensity and diminished hemostatic capacity.
        Platelets. 2019; 30: 112-119
        • Chen Z
        • Mondal NK
        • Ding J
        • et al.
        Shear-induced platelet receptor shedding by non-physiological high shear stress with short exposure time: Glycoprotein Ibalpha and glycoprotein VI.
        Thromb Res. 2015; 135: 692-698
      2. Extracoporeal Life Support Organization. COVID-19 interim guidelines 2020. Available at: https://www.elso.org/Portals/0/Files/pdf/ELSO%20covid%20guidelines%20final.pdf. Accessed January 5, 2021.

        • Usman AA
        • Han J
        • Acker A
        • et al.
        A case series of devastating intracranial hemorrhage during venovenous extracorporeal membrane oxygenation for COVID-19.
        J Cardiothorac Vasc Anesth. 2020; 34: 3006-3012
        • Mak SM
        • Mak D
        • Hodson D
        • et al.
        Pulmonary ischaemia without pulmonary arterial thrombus in COVID-19 patients receiving extracorporeal membrane oxygenation: A cohort study.
        Clin Radiol. 2020; 75 (795 e1-795 e5)
        • Fattouch K
        • Corrao S
        • Augugliaro E
        • et al.
        Cardiac surgery outcomes in patients with coronavirus disease 2019 (COVID-19): A case-series report.
        J Thorac Cardiovasc Surg. 2020 Oct 22; ([E-pub ahead of print])
        • Topal G
        • Loesch A
        • Dashwood MR.
        COVID-19 - endothelial axis and coronary artery bypass graft patency: A target for therapeutic intervention?.
        Braz J Cardiovasc Surg. 2020; 35: 757-763
        • White D
        • MacDonald S
        • Bull T
        • et al.
        Heparin resistance in COVID-19 patients in the intensive care unit.
        J Thromb Thrombolysis. 2020; 50: 287-291