Advertisement

Opioid-Free Cardiac Surgery: A Multimodal Pain Management Strategy With a Focus on Bilateral Erector Spinae Plane Block Catheters

Published:September 07, 2022DOI:https://doi.org/10.1053/j.jvca.2022.09.002
      CARDIAC SURGERY REQUIRING STERNOTOMY presents unique challenges for perioperative and postoperative analgesia. Intraoperatively, the sympathetic response to surgical stimulation must be modulated carefully to prevent excessive bleeding, maintain the integrity of surgical repairs, and decrease the risk of stroke or iatrogenic aortic injury without compromising myocardial and systemic perfusion. This must be achieved in patients whose underlying abnormal physiology, coupled with the effects of the surgical procedure, often result in tenuous hemodynamics. In the postoperative setting, adequate analgesia is critical to optimize respiratory mechanics and pulmonary toilet, ambulation, and overall recovery.
      • Chaney MA.
      Postoperative pain management for the cardiac patient.
      Furthermore, perioperative pain control is a key component of enhanced recovery pathways and prevention of chronic pain.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiothoracic and Vascular Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chaney MA.
        Postoperative pain management for the cardiac patient.
        in: Kaplan JA Kaplan's Cardiac Anesthesia. Elsevier, Philadelphia, PA2017: 1425-1457
        • Beloeil H.
        Opioid-free anesthesia.
        Best Pract Res Clin Anaesthesiol. 2019; 33: 353-360
        • Blendon RJ
        • Benson JM.
        The public and the opioid-abuse epidemic.
        N Engl J Med. 2018; 378: 407-411
        • Chia YY
        • Liu K
        • Wang JJ
        • et al.
        Intraoperative high dose fentanyl induces postoperative fentanyl tolerance.
        Can J Anaesth. 1999; 46: 872-877
        • Kamdar NV
        • Hoftman N
        • Rahman S
        • et al.
        Opioid-free analgesia in the era of enhanced recovery after surgery and the surgical home: Implications for postoperative outcomes and population health.
        Anesth Analg. 2017; 125: 1089-1091
        • Kharasch ED
        • Brunt LM.
        Perioperative opioids and public health.
        Anesthesiology. 2016; 124: 960-965
        • Lavand'homme P
        • Estebe JP.
        Opioid-free anesthesia: A different regard to anesthesia practice.
        Curr Opin Anaesthesiol. 2018; 31: 556-561
        • Caruso TJ
        • Lawrence K
        • Tsui BCH.
        Regional anesthesia for cardiac surgery.
        Curr Opin Anaesthesiol. 2019; 32: 674-682
        • Guay J
        • Kopp S.
        Epidural analgesia for adults undergoing cardiac surgery with or without cardiopulmonary bypass.
        Cochrane Database Syst Rev. 2019; 3CD006715
        • Landoni G
        • Isella F
        • Greco M
        • et al.
        Benefits and risks of epidural analgesia in cardiac surgery.
        Br J Anaesth. 2015; 115: 25-32
        • Cardinale JP
        • Gilly G.
        Opiate-free tricuspid valve replacement: Case report.
        Semin Cardiothorac Vasc Anesth. 2018; 22: 407-413
        • Chanowski EJP
        • Horn JL
        • Boyd JH
        • et al.
        Opioid-free ultra-fast-track on-pump coronary artery bypass grafting using erector spinae plane catheters.
        J Cardiothorac Vasc Anesth. 2019; 33: 1988-1990
        • Landry E
        • Burns S
        • Pelletier MP
        • et al.
        A successful opioid-free anesthetic in a patient undergoing cardiac surgery.
        J Cardiothorac Vasc Anesth. 2019; 33: 2517-2520
        • Chaney MA.
        Intrathecal and epidural anesthesia and analgesia for cardiac surgery.
        Anesth Analg. 2006; 102: 45-64
        • Hemmerling TM
        • Cyr S
        • Terrasini N.
        Epidural catheterization in cardiac surgery: The 2012 risk assessment.
        Ann Card Anaesth. 2013; 16: 169-177
        • Ho AM
        • Chung DC
        • Joynt GM.
        Neuraxial blockade and hematoma in cardiac surgery: Estimating the risk of a rare adverse event that has not (yet) occurred.
        Chest. 2000; 117: 551-555
        • Chin KJ
        • Pawa A
        • Forero M
        • et al.
        Ultrasound-guided fascial plane blocks of the thorax: Pectoral I and II, serratus anterior plane, and erector spinae plane blocks.
        Adv Anesth. 2019; 37: 187-205
        • Kose HC
        • Kose SG
        • Thomas DT.
        Lumbar versus thoracic erector spinae plane block: Similar nomenclature, different mechanism of action.
        J Clin Anesth. 2018; 48: 1
        • Nagaraja PS
        • Ragavendran S
        • Singh NG
        • et al.
        Comparison of continuous thoracic epidural analgesia with bilateral erector spinae plane block for perioperative pain management in cardiac surgery.
        Ann Card Anaesth. 2018; 21: 323-327
        • Athar M
        • Parveen S
        • Yadav M
        • et al.
        A randomized double-blind controlled trial to assess the efficacy of ultrasound-guided erector spinae plane block in cardiac surgery.
        J Cardiothorac Vasc Anesth. 2021; 35: 3574-3580
        • Krishna SN
        • Chauhan S
        • Bhoi D
        • et al.
        Bilateral erector spinae plane block for acute post-surgical pain in adult cardiac surgical patients: A randomized controlled trial.
        J Cardiothorac Vasc Anesth. 2019; 33: 368-375
        • Kurowicki A
        • Borys M
        • Zurek S
        • et al.
        Remifentanil and sevoflurane based anesthesia combined with bilateral erector spinae plane block in patients undergoing off-pump coronary artery bypass graft surgery.
        Wideochir Inne Tech Maloinwazyjne. 2020; 15: 346-350
        • Macaire P
        • Ho N
        • Nguyen T
        • et al.
        Ultrasound-guided continuous thoracic erector spinae plane block within an enhanced recovery program is associated with decreased opioid consumption and improved patient postoperative rehabilitation after open cardiac surgery-a patient-matched, controlled before-and-after study.
        J Cardiothorac Vasc Anesth. 2019; 33: 1659-1667
        • Misra S
        • Awal S.
        Does erector spinae plane block result in improved postoperative analgesia and enhanced recovery in adult patients after cardiac surgery?.
        Interact Cardiovasc Thorac Surg. 2021; 32: 873-877
        • Vaughan BN
        • Bartone CL
        • McCarthy CM
        • et al.
        Ultrasound-guided continuous bilateral erector spinae plane blocks are associated with reduced opioid consumption and length of stay for open cardiac surgery: A retrospective cohort study.
        J Clin Med. 2021; 10: 5022
        • Bousquet P
        • Labaste F
        • Gobin J
        • et al.
        Bilateral parasternal block and bilateral erector spinae plane block reduce opioid consumption in during cardiac surgery.
        J Cardiothorac Vasc Anesth. 2021; 35: 1249-1250
        • Schwartz RH
        • Urits I
        • Viswanath O
        • et al.
        Use of an erector spinae plane block for perioperative pain control in coronary artery bypass graft surgery.
        J Clin Anesth. 2020; 61109652
        • Song K
        • Xu Q
        • Knott VH
        • et al.
        Liposomal bupivacaine-based erector spinae block for cardiac surgery.
        J Cardiothorac Vasc Anesth. 2021; 35: 1555-1559
        • Toscano A
        • Capuano P
        • Galata M
        • et al.
        Safety of ultrasound-guided serratus anterior and erector spinae fascial plane blocks: A retrospective analysis in patients undergoing cardiac surgery while receiving anticoagulant and antiplatelet drugs.
        J Cardiothorac Vasc Anesth. 2022; 36: 483-488
        • Weibel S
        • Jelting Y
        • Pace NL
        • et al.
        Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults.
        Cochrane Database Syst Rev. 2018; 6CD009642
        • Roca J
        • Valero R
        • Gomar C.
        Pain locations in the postoperative period after cardiac surgery: Chronology of pain and response to treatment.
        Rev Esp Anestesiol Reanim. 2017; 64: 391-400
        • Bignami E
        • Castella A
        • Pota V
        • et al.
        Perioperative pain management in cardiac surgery: A systematic review.
        Minerva Anestesiol. 2018; 84: 488-503
        • Lahtinen P
        • Kokki H
        • Hynynen M.
        Pain after cardiac surgery: A prospective cohort study of 1-year incidence and intensity.
        Anesthesiology. 2006; 105: 794-800
        • Kim RS
        • Gonzalez-Ciccarelli LF
        • Brovman EY.
        Regional anesthesia techniques for cardiac surgery: Where are we?.
        Curr Opin Anaesthesiol. 2022; 35: 485-492
        • Brown CR
        • Chen Z
        • Khurshan F
        • et al.
        Development of persistent opioid use after cardiac surgery.
        JAMA Cardiol. 2020; 5: 889-896
        • Allen KB
        • Brovman EY
        • Chhatriwalla AK
        • et al.
        Opioid-related adverse events: Incidence and impact in patients undergoing cardiac surgery.
        Semin Cardiothorac Vasc Anesth. 2020; 24: 219-226
        • Clowes Jr, GH
        • Neville WE
        • Hopkins A
        • et al.
        Factors contributing to success or failure in the use of a pump oxygenator for complete by-pass of the heart and lung, experimental and clinical.
        Surgery. 1954; 36: 557-579
        • Djaiani G
        • Fedorko L
        • Beattie WS
        Regional anesthesia in cardiac surgery: A friend or a foe?.
        Semin Cardiothorac Vasc Anesth. 2005; 9: 87-104
        • Mittnacht AJC
        • Shariat A
        • Weiner MM
        • et al.
        Regional techniques for cardiac and cardiac-related procedures.
        J Cardiothorac Vasc Anesth. 2019; 33: 532-546
        • Yu S
        • Valencia MB
        • Roques V
        • et al.
        Regional analgesia for minimally invasive cardiac surgery.
        J Card Surg. 2019; 34: 1289-1296
        • Cosarcan SK
        • Sezer Ö A
        • Gürkahraman S
        • et al.
        Regional analgesia techniques for effective recovery from coronary artery bypass surgeries: A retrospective study involving the experience of a single center.
        J Cardiothorac Surg. 2022; 17
        • Ritter MJ
        • Christensen JM
        • Yalamuri SM.
        Regional anesthesia for cardiac surgery: A review of fascial plane blocks and their uses.
        Adv Anesth. 2021; 39: 215-240
        • Yalamuri S
        • Klinger RY
        • Bullock WM
        • et al.
        Pectoral fascial (PECS) I and II blocks as rescue analgesia in a patient undergoing minimally invasive cardiac surgery.
        Reg Anesth Pain Med. 2017; 42: 764-766
        • Kumar KN
        • Kalyane RN
        • Singh NG
        • et al.
        Efficacy of bilateral pectoralis nerve block for ultrafast tracking and postoperative pain management in cardiac surgery.
        Ann Card Anaesth. 2018; 21: 333-338
        • Khalil AE
        • Abdallah NM
        • Bashandy GM
        • et al.
        Ultrasound-guided serratus anterior plane block versus thoracic epidural analgesia for thoracotomy pain.
        J Cardiothorac Vasc Anesth. 2017; 31: 152-158
        • Torre DE
        • Pirri C
        • Contristano M
        • et al.
        Ultrasound-guided PECS II + serratus plane fascial blocks are associated with reduced opioid consumption and lengths of stay for minimally invasive cardiac surgery: An observational retrospective study.
        Life (Basel). 2022; 12: 805
        • Kaushal B
        • Chauhan S
        • Saini K
        • et al.
        Comparison of the efficacy of ultrasound-guided serratus anterior plane block, pectoral nerves II block, and intercostal nerve block for the management of postoperative thoracotomy pain after pediatric cardiac surgery.
        J Cardiothorac Vasc Anesth. 2019; 33: 418-425
        • Sekandarzad MW
        • Konstantatos A
        • Donovan S.
        Bilateral continuous serratus anterior blockade for postoperative analgesia after bilateral sequential lung transplantation.
        J Cardiothorac Vasc Anesth. 2019; 33: 1356-1359
        • Liu H
        • Emelife PI
        • Prabhakar A
        • et al.
        Regional anesthesia considerations for cardiac surgery.
        Best Pract Res Clin Anaesthesiol. 2019; 33: 387-406
        • Adhikary SD
        • Bernard S
        • Lopez H
        • et al.
        Erector spinae plane block versus retrolaminar block: A magnetic resonance imaging and anatomical study.
        Reg Anesth Pain Med. 2019; 43: 756-762
        • Horlocker TT
        • Vandermeuelen E
        • Kopp SL
        • et al.
        Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine evidence-based guidelines (fourth edition).
        Reg Anesth Pain Med. 2018; 43: 263-309
        • Kozek-Langenecker SA
        • Fries D
        • Gütl M
        • et al.
        [Locoregional anesthesia and coagulation inhibitors. Recommendations of the Task Force on Perioperative Coagulation of the Austrian Society for Anesthesiology and Intensive Care Medicine].
        Anaesthesist. 2005; 54: 476-484
        • Tsui BCH
        • Kirkham K
        • Kwofie MK
        • et al.
        Practice advisory on the bleeding risks for peripheral nerve and interfascial plane blockade: Evidence review and expert consensus.
        Can J Anaesth. 2019; 66: 1356-1384
        • Chen L
        • Wu Y
        • Cai Y
        • et al.
        Comparison of programmed intermittent bolus infusion and continuous infusion for postoperative patient-controlled analgesia with thoracic paravertebral block catheter: A randomized, double-blind, controlled trial.
        Reg Anesth Pain Med. 2019; 44: 240-245
        • Kopacz DJ
        • Neal JM
        • Pollock JE
        The regional anesthesia "learning curve". What is the minimum number of epidural and spinal blocks to reach consistency?.
        Reg Anesth. 1996; 21: 182-190
        • Wakeman SE.
        Diagnosis and treatment of opioid use disorder in 2020.
        JAMA. 2020; 323: 2082-2083
        • Anwar S
        • Herath B
        • O'Brien B
        Adding insult to injury-are we fueling the opioid crisis during the perioperative period?.
        J Cardiothorac Vasc Anesth. 2021; 35: 1712-1714
        • Pena JJ
        • Chen CJ
        • Clifford H
        • et al.
        Introduction of an analgesia prescription guideline can reduce unused opioids after cardiac surgery: A before and after cohort study.
        J Cardiothorac Vasc Anesth. 2021; 35: 1704-1711
        • Soffin EM
        • Lee BH
        • Kumar KK
        • et al.
        The prescription opioid crisis: Role of the anaesthesiologist in reducing opioid use and misuse.
        Br J Anaesth. 2019; 122: e198-e208
        • Nygård E
        • Kofoed KF
        • Freiberg J
        • et al.
        Effects of high thoracic epidural analgesia on myocardial blood flow in patients with ischemic heart disease.
        Circulation. 2005; 111: 2165-2170
        • Casalino S
        • Mangia F
        • Stelian E
        • et al.
        High thoracic epidural anesthesia in cardiac surgery: Risk factors for arterial hypotension.
        Tex Heart Inst J. 2006; 33: 148-153
        • Wink J
        • de Wilde RB
        • Wouters PF
        • et al.
        Thoracic epidural anesthesia reduces right ventricular systolic function with maintained ventricular-pulmonary coupling.
        Circulation. 2016; 134: 1163-1175
        • Zhang S
        • Wu X
        • Guo H
        • et al.
        Thoracic epidural anesthesia improves outcomes in patients undergoing cardiac surgery: Meta-analysis of randomized controlled trials.
        Eur J Med Res. 2015; 20: 25
        • Svircevic V
        • van Dijk D
        • Nierich AP
        • et al.
        Meta-analysis of thoracic epidural anesthesia versus general anesthesia for cardiac surgery.
        Anesthesiology. 2011; 114: 271-282
        • Bracco D
        • Hemmerling T.
        Epidural analgesia in cardiac surgery: An updated risk assessment.
        Heart Surg Forum. 2007; 10: E334-E337
        • Chakravarthy M
        • Thimmangowda P
        • Krishnamurthy J
        • et al.
        Thoracic epidural anesthesia in cardiac surgical patients: A prospective audit of 2,113 cases.
        J Cardiothorac Vasc Anesth. 2005; 19: 44-48
        • Scarfe AJ
        • Schuhmann-Hingel S
        • Duncan JK
        • et al.
        Continuous paravertebral block for post-cardiothoracic surgery analgesia: A systematic review and meta-analysis.
        Eur J Cardiothorac Surg. 2016; 50: 1010-1018
        • El Shora HA
        • El Beleehy AA
        • Abdelwahab AA
        • et al.
        Bilateral paravertebral block versus thoracic epidural analgesia for pain control post-cardiac surgery: A randomized controlled trial.
        Thorac Cardiovasc Surg. 2020; 68: 410-416
        • Balan C
        • Bubenek-Turconi SI
        • Tomescu DR
        • et al.
        Ultrasound-guided regional anesthesia-current strategies for enhanced recovery after cardiac surgery.
        Medicina (Kaunas). 2021; 57: 312
        • Guerra-Londono CE
        • Privorotskiy A
        • Cozowicz C
        • et al.
        Assessment of intercostal nerve block analgesia for thoracic surgery: A systematic review and meta-analysis.
        JAMA Netw Open. 2021; 4e2133394
        • Blanco R
        • Fajardo M
        • Parras Maldonado T
        Ultrasound description of Pecs II (modified Pecs I): A novel approach to breast surgery.
        Rev Esp Anestesiol Reanim. 2012; 59: 470-475
        • Devarajan J
        • Balasubramanian S
        • Shariat AN
        • et al.
        Regional analgesia for cardiac surgery. Part 2: Peripheral regional analgesia for cardiac surgery.
        Semin Cardiothorac Vasc Anesth. 2021; 25: 265-279
        • Aydin ME
        • Ahiskalioglu A
        • Ates I
        • et al.
        Efficacy of ultrasound-guided transversus thoracic muscle plane block on postoperative opioid consumption after cardiac surgery: A prospective, randomized, double-blind study.
        J Cardiothorac Vasc Anesth. 2020; 34: 2996-3003
        • Zhang Y
        • Gong H
        • Zhan B
        • et al.
        Effects of bilateral pecto-intercostal fascial block for perioperative pain management in patients undergoing open cardiac surgery: A prospective randomized study.
        BMC Anesthesiol. 2021; 21: 175
        • Kumar AK
        • Chauhan S
        • Bhoi D
        • et al.
        Pectointercostal fascial block (PIFB) as a novel technique for postoperative pain management in patients undergoing cardiac surgery.
        J Cardiothorac Vasc Anesth. 2021; 35: 116-122
        • Khera T
        • Murugappan KR
        • Leibowitz A
        • et al.
        Ultrasound-guided pecto-intercostal fascial block for postoperative pain management in cardiac surgery: A prospective, randomized, placebo-controlled trial.
        J Cardiothorac Vasc Anesth. 2021; 35: 896-903
        • Hamed MA
        • Abdelhady MA
        • Hassan A
        • et al.
        The analgesic effect of ultrasound-guided bilateral pectointercostal fascial plane block on sternal wound pain after open heart surgeries: A randomized controlled study.
        Clin J Pain. 2022; 38: 279-284
        • Kaya C
        • Dost B
        • Dokmeci O
        • et al.
        Comparison of ultrasound-guided pecto-intercostal fascial block and transversus thoracic muscle plane block for acute poststernotomy pain management after cardiac surgery: A prospective, randomized, double-blind pilot study.
        J Cardiothorac Vasc Anesth. 2022; 36: 2313-2321
        • Zhang Y
        • Min J
        • Chen S.
        Continuous pecto-intercostal fascial block provides effective analgesia in patients undergoing open cardiac surgery: A randomized controlled trial.
        Pain Med. 2022; 23: 440-447
        • Forero M
        • Adhikary SD
        • Lopez H
        • et al.
        The erector spinae plane block: A novel analgesic technique in thoracic neuropathic pain.
        Reg Anesth Pain Med. 2016; 41: 621-627
        • Chin KJ
        • El-Boghdadly K.
        Mechanisms of action of the erector spinae plane (ESP) block: A narrative review.
        Can J Anaesth. 2021; 68: 387-408
        • Ivanusic J
        • Konishi Y
        • Barrington MJ.
        A cadaveric study investigating the mechanism of action of erector spinae blockade.
        Reg Anesth Pain Med. 2018; 43: 567-571
        • Aponte A
        • Sala-Blanch X
        • Prats-Galino A
        • et al.
        Anatomical evaluation of the extent of spread in the erector spinae plane block: A cadaveric study.
        Can J Anaesth. 2019; 66: 886-893
        • Zhang J
        • He Y
        • Wang S
        • et al.
        The erector spinae plane block causes only cutaneous sensory loss on ipsilateral posterior thorax: A prospective observational volunteer study.
        BMC Anesthesiol. 2020; 20: 88
        • Diwan S
        • Nair A.
        Is paravertebral-epidural spread the underlying mechanism of action of erector spinae plane block?.
        Turk J Anaesthesiol Reanim. 2020; 48: 86-87
        • Schwartzmann A
        • Peng P
        • Maciel MA
        • et al.
        Mechanism of the erector spinae plane block: Insights from a magnetic resonance imaging study.
        Can J Anaesth. 2018; 65: 1165-1166
        • Saadawi M
        • Layera S
        • Aliste J
        • et al.
        Erector spinae plane block: A narrative review with systematic analysis of the evidence pertaining to clinical indications and alternative truncal blocks.
        J Clin Anesth. 2021; 68110063
        • Tulgar S
        • Ahiskalioglu A
        • De Cassai A
        • et al.
        Efficacy of bilateral erector spinae plane block in the management of pain: Current insights.
        J Pain Res. 2019; 12: 2597-2613
        • Cameron M
        • Tam K
        • Al Wahaibi K
        • et al.
        Intraoperative ketamine for analgesia post-coronary artery bypass surgery: A randomized, controlled, double-blind clinical trial.
        J Cardiothorac Vasc Anesth. 2020; 34: 586-591
        • Verret M
        • Lauzier F
        • Zarychanski R
        • et al.
        Perioperative use of gabapentinoids for the management of postoperative acute pain: A systematic review and meta-analysis.
        Anesthesiology. 2020; 133: 265-279
        • Mamoun NF
        • Lin P
        • Zimmerman NM
        • et al.
        Intravenous acetaminophen analgesia after cardiac surgery: A randomized, blinded, controlled superiority trial.
        J Thorac Cardiovasc Surg. 2016; 152 (e881): 881-889
        • Jelacic S
        • Bollag L
        • Bowdle A
        • et al.
        Intravenous acetaminophen as an adjunct analgesic in cardiac surgery reduces opioid consumption but not opioid-related adverse effects: A randomized controlled trial.
        J Cardiothorac Vasc Anesth. 2016; 30: 997-1004
        • Peng K
        • Shen YP
        • Ying YY
        • et al.
        Perioperative dexmedetomidine and 5-year survival in patients undergoing cardiac surgery.
        Br J Anaesth. 2021; 127: 215-223
        • Li P
        • Li LX
        • Zhao ZZ
        • et al.
        Dexmedetomidine reduces the incidence of postoperative delirium after cardiac surgery: A meta-analysis of randomized controlled trials.
        BMC Anesthesiol. 2021; 21: 153
        • Turan A
        • Duncan A
        • Leung S
        • et al.
        Dexmedetomidine for reduction of atrial fibrillation and delirium after cardiac surgery (DECADE): A randomised placebo-controlled trial.
        Lancet. 2020; 396: 177-185
        • Beloeil H
        • Garot M
        • Lebuffe G
        • et al.
        balanced opioid-free anesthesia with dexmedetomidine versus balanced anesthesia with remifentanil for major or intermediate noncardiac surgery.
        Anesthesiology. 2021; 134: 541-551
        • Liu H
        • Ji F
        • Peng K
        • et al.
        Sedation after cardiac surgery: Is one drug better than another?.
        Anesth Analg. 2017; 124: 1061-1070
        • Herr DL
        • Sum-Ping ST
        • England M.
        ICU sedation after coronary artery bypass graft surgery: Dexmedetomidine-based versus propofol-based sedation regimens.
        J Cardiothorac Vasc Anesth. 2003; 17: 576-584