Advertisement

Review of Postoperative Care for Heart Transplant Recipients

Published:September 18, 2022DOI:https://doi.org/10.1053/j.jvca.2022.09.083
      The early postoperative management strategies after heart transplantation include optimizing the function of the denervated heart, correcting the causes of hemodynamic instability, and initiating and maintaining immunosuppressive therapy, allograft rejection surveillance, and prophylaxis against infections caused by immunosuppression. The course of postoperative support is influenced by the quality of allograft myocardial protection prior to implantation and reperfusion, donor-recipient heart size matching, surgical technique of orthotopic heart transplantation, and patient factors (eg, preoperative condition, immunologic compatibility, postoperative vasomotor tone, severity and reversibility of pulmonary vascular hypertension, pulmonary function, mediastinal blood loss, and end-organ perfusion). This review provides an overview of the early postoperative care of recipients and includes a brief description of the surgical techniques for orthotopic heart transplantation.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiothoracic and Vascular Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nayak A
        • Dong T
        • Ko YA
        • et al.
        Validating patient prioritization in the 2018 Revised United Network for Organ Sharing Heart Allocation System: A single-center experience.
        Clin Transplant. 2020; 34: e13816
        • Costanzo MR
        • Dipchand A
        • Starling R
        • et al.
        The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients.
        J Heart Lung Transplant. 2010; 29: 914-956
        • Pannekoek A
        • Ali U.
        Does the solution used for cold static storage of hearts impact on heart transplant survival?.
        Interact Cardiovasc Thorac Surg. 2021; 33: 814-818
        • Beuth J
        • Falter F
        • Pinto Ribeiro RV
        • et al.
        New strategies to expand and optimize heart donor pool: Ex vivo heart perfusion and donation after circulatory death: A review of current research and future trends.
        Anesth Analg. 2019; 128: 406-413
        • Chan JL
        • Kobashigawa JA
        • Reich HJ
        • et al.
        Intermediate outcomes with ex-vivo allograft perfusion for heart transplantation.
        J Heart Lung Transplant. 2017; 36: 258-263
        • Ragalie WS
        • Ardehali A.
        Current status of normothermic ex-vivo perfusion of cardiac allografts.
        Curr Opin Organ Transplant. 2020; 25: 237-240
        • Lower RR
        • Stofer RC
        • Shumway NE.
        Homovital transplantation of the heart.
        J Thorac Cardiovasc Surg. 1961; 41: 196-204
        • Bacal F
        • Bocchi EA
        • Vieira ML
        • et al.
        Permanent and temporary pacemaker implantation after orthotopic heart transplantation.
        Arq Bras Cardiol. 2000; 74: 5-12
        • Wellmann P
        • Herrmann FE
        • Hagl C
        • et al.
        A single center study of 1,179 heart transplant patients-factors affecting pacemaker implantation.
        Pacing Clin Electrophysiol. 2017; 40: 247-254
        • Zijderhand CF
        • Veen KM
        • Caliskan K
        • et al.
        Biatrial versus bicaval orthotopic heart transplantation: A systematic review and meta-analysis.
        Ann Thorac Surg. 2020; 110: 684-691
        • Badano LP
        • Miglioranza MH
        • Edvardsen T
        • et al.
        European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation.
        Eur Heart J Cardiovasc Imaging. 2015; 16: 919-948
        • Sarsam MA
        • Campbell CS
        • Yonan NA
        • et al.
        An alternative surgical technique in orthotopic cardiac transplantation.
        J Card Surg. 1993; 8: 344-349
        • Rothman SA
        • Jeevanandam V
        • Combs WG
        • et al.
        Eliminating bradyarrhythmias after orthotopic heart transplantation.
        Circulation. 1996; 94: II278-II282
        • Meyer SR
        • Modry DL
        • Bainey K
        • et al.
        Declining need for permanent pacemaker insertion with the bicaval technique of orthotopic heart transplantation.
        Can J Cardiol. 2005; 21: 159-163
        • Beniaminovitz A
        • Savoia MT
        • Oz M
        • et al.
        Improved atrial function in bicaval versus standard orthotopic techniques in cardiac transplantation.
        Am J Cardiol. 1997; 80: 1631-1635
        • Aziz T
        • Burgess M
        • Khafagy R
        • et al.
        Bicaval and standard techniques in orthotopic heart transplantation: Medium-term experience in cardiac performance and survival.
        J Thorac Cardiovasc Surg. 1999; 118: 115-122
        • Gamel A
        • Yonan NA
        • Grant S
        • et al.
        Orthotopic cardiac transplantation: A comparison of standard and bicaval Wythenshawe techniques.
        J Thorac Cardiovasc Surg. 1995; 109: 721-729
        • Dreyfus G
        • Jebara V
        • Mihaileanu S
        • et al.
        Total orthotopic heart transplantation: An alternative to the standard technique.
        Ann Thorac Surg. 1991; 52: 1181-1184
        • Yacoub M
        • Mankad P
        • Ledingham S.
        Donor procurement and surgical techniques for cardiac transplantation.
        Semin Thorac Cardiovasc Surg. 1990; 2: 153-161
        • Scharin TM
        • Lindberg E
        • Gruner SB
        • et al.
        Cardiac reserve in the transplanted heart: Effect of a graft polymorphism in the beta1-adrenoceptor.
        J Heart Lung Transplant. 2007; 26: 915-920
        • Stobierska-Dzierzek B
        • Awad H
        • Michler RE.
        The evolving management of acute right-sided heart failure in cardiac transplant recipients.
        J Am Coll Cardiol. 2001; 38: 923-931
        • Mackintosh AF
        • Carmichael DJ
        • Wren C
        • et al.
        Sinus node function in first three weeks after cardiac transplantation.
        Br Heart J. 1982; 48: 584-588
        • Leonelli FM
        • Pacifico A
        • Young JB.
        Frequency and significance of conduction defects early after orthotopic heart transplantation.
        Am J Cardiol. 1994; 73: 175-179
        • Herrmann FEM
        • Wellmann P
        • Sadoni S
        • et al.
        Sinus node dysfunction after heart transplantation-an analysis of risk factors and atrial pacing burden.
        Clin Transplant. 2018; 32: e13202
        • Aziz S
        • Soine LA
        • Lewis SL
        • et al.
        Donor left ventricular hypertrophy increases risk for early graft failure.
        Transpl Int. 1997; 10: 446-450
        • Chuttani K
        • Pandian NG
        • Mohanty PK
        • et al.
        Left ventricular diastolic collapse. An echocardiographic sign of regional cardiac tamponade.
        Circulation. 1991; 83: 1999-2006
        • Canivet JL
        • Defraigne JO
        • Demoulin JC
        • et al.
        Mechanical flow obstruction after heart transplantation diagnosed by TEE.
        Ann Thorac Surg. 1994; 58: 890-891
        • Leeman M
        • Van CM
        • Vachiery JL
        • et al.
        Determinants of right ventricular failure after heart transplantation.
        Acta Cardiol. 1996; 51: 441-449
        • Kieler-Jensen N
        • Lundin S
        • Ricksten SE.
        Vasodilator therapy after heart transplantation: Effects of inhaled nitric oxide and intravenous prostacyclin, prostaglandin E1, and sodium nitroprusside.
        J Heart Lung Transplant. 1995; 14: 436-443
        • Rajek A
        • Pernerstorfer T
        • Kastner J
        • et al.
        Inhaled nitric oxide reduces pulmonary vascular resistance more than prostaglandin E(1) during heart transplantation.
        Anesth Analg. 2000; 90: 523-530
        • Sablotzki A
        • Hentschel T
        • Gruenig E
        • et al.
        Hemodynamic effects of inhaled aerosolized iloprost and inhaled nitric oxide in heart transplant candidates with elevated pulmonary vascular resistance.
        Eur J Cardiothorac Surg. 2002; 22: 746-752
        • Khan TA
        • Schnickel G
        • Ross D
        • et al.
        A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients.
        J Thorac Cardiovasc Surg. 2009; 138: 1417-1424
      1. U.S. Food and Drug Administration. Labeling changes on mortality, kidney injury, and excess bleeding with hydroxyethyl starch products. Available at: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/labeling-changes-mortality-kidney-injury-and-excess-bleeding-hydroxyethyl-starch-products. Accessed August 22, 2022.

        • Lagny MG
        • Roediger L
        • Koch JN
        • et al.
        Hydroxyethyl starch 130/0.4 and the risk of acute kidney injury after cardiopulmonary bypass: A single-center retrospective study.
        J Cardiothorac Vasc Anesth. 2016; 30: 869-875
        • Bayer O
        • Schwarzkopf D
        • oesn't T
        • et al.
        Perioperative fluid therapy with tetrastarch and gelatin in cardiac surgery – a prospective sequential analysis.
        Crit Care Med. 2013; 41: 2532-2542
        • Hauptman PJ
        • Couper GS
        • Aranki SF
        • et al.
        Pericardial effusions after cardiac transplantation.
        J Am Coll Cardiol. 1994; 23: 1625-1629
        • Ciliberto GR
        • Anjos MC
        • Gronda E
        • et al.
        Significance of pericardial effusion after heart transplantation.
        Am J Cardiol. 1995; 76: 297-300
        • Al-Dadah AS
        • Guthrie TJ
        • Pasque MK
        • et al.
        Clinical course and predictors of pericardial effusion following cardiac transplantation.
        Transplant Proc. 2007; 39: 1589-1592
        • Patarroyo M
        • Simbaqueba C
        • Shrestha K
        • et al.
        Pre-operative risk factors and clinical outcomes associated with vasoplegia in recipients of orthotopic heart transplantation in the contemporary era.
        J Heart Lung Transplant. 2012; 31: 282-287
        • Byrne JG
        • Leacche M
        • Paul S
        • et al.
        Risk factors and outcomes for 'vasoplegia syndrome' following cardiac transplantation.
        Eur J Cardiothorac Surg. 2004; 25: 327-332
        • Carrel T
        • Englberger L
        • Mohacsi P
        • et al.
        Low systemic vascular resistance after cardiopulmonary bypass: Incidence, etiology, and clinical importance.
        J Card Surg. 2000; 15: 347-353
        • Paniagua MJ
        • Crespo-Leiro MG
        • Muñiz J
        • et al.
        Hypotension, acidosis and vasodilation syndrome after heart transplant: Incidence, risk factors, and prognosis.
        Transplant Proc. 2003; 35: 1957-1958
        • Shanmugam G.
        Vasoplegic syndrome–the role of methylene blue.
        Eur J Cardiothorac Surg. 2005; 28: 705-710
        • Chemmalakuzhy J
        • Costanzo MR
        • Meyer P
        • et al.
        Hypotension, acidosis, and vasodilatation syndrome post-heart transplant: Prognostic variables and outcomes.
        J Heart Lung Transplant. 2001; 20: 1075-1083
        • Tambur AR
        • Chemmalakuzhy J
        • Short J
        • et al.
        Hypotension, acidosis, and vasodilatation syndrome post-heart transplantation: Lack of association with genetic cytokine profile.
        Transplant Proc. 2001; 33: 2960-2961
        • Hosseinian L
        • Weiner M
        • Levin MA
        • et al.
        Methylene blue: Magic bullet for vasoplegia?.
        Anesth Analg. 2016; 122: 194-201
        • Dayan V
        • Cal R
        • Giangrossi F.
        Risk factors for vasoplegia after cardiac surgery: A meta-analysis.
        Interact Cardiovasc Thorac Surg. 2019; 28: 838-844
        • Sun X
        • Zhang L
        • Hill PC
        • et al.
        Is incidence of postoperative vasoplegic syndrome different between offpump and on-pump coronary artery bypass grafting surgery?.
        Eur J Cardiothorac Surg. 2008; 34: 820-825
        • Wittwer ED
        • Lynch JJ
        • Oliver Jr, WC
        • et al.
        The incidence of vasoplegia in adult patients with right-sided congenital heart defects undergoing cardiac surgery and the correlation with serum vasopressin concentrations.
        J Thorac Cardiovasc Surg. 2014; 148: 625-630
        • Bastopcu M
        • Sargın M
        • Kuplay H
        • et al.
        Risk factors for vasoplegia after coronary artery bypass and valve surgery.
        J Card Surg. 2021; 36: 2729-2734
        • Tsiouris A
        • Wilson L
        • Haddadin AS
        • et al.
        Risk assessment and outcomes of vasoplegia after cardiac surgery.
        Gen Thorac Cardiovasc Surg. 2017; 65: 557-565
        • van Vessem ME
        • Palmen M
        • Couperus LE
        • et al.
        Incidence and predictors of vasoplegia after heart failure surgery.
        Eur J Cardiothorac Surg. 2017; 51: 532-538
        • Landry DW
        • Oliver JA.
        The pathogenesis of vasodilatory shock.
        N Engl J Med. 2011; 345: 588-595
        • Lambden S
        • Creagh-Brown BC
        • Hunt J
        • et al.
        Definitions and pathophysiology of vasoplegic shock.
        Crit Care. 2018; 22: 174
        • Kunkes JH
        • Baker WL
        • Hammond JA
        • et al.
        Vasopressin therapy in cardiac surgery.
        J Card Surg. 2019; 34: 20-27
        • Argenziano M
        • Chen JM
        • Choundhri AF
        • et al.
        Management of vasodilatory shock after cardiac surgery: Identification of predisposing factors and use of a novel pressor agent.
        J Thorac Surg. 1998; 39: 1714-1720
        • Busse LW
        • Barker N
        • Petersen C.
        Vasoplegic syndrome following cardiothoracic surgery-review of pathophysiology and update of treatment options.
        Crit Care. 2020; 24: 36
        • Hou L
        • Li W
        • Wang X
        Mechanism of interleukin-1 beta induced calcitonin gene-related peptide production from dorsal root ganglion neurons of neonatal rats.
        J Neurosci Res. 2003; 73: 188-197
        • Chan JL
        • Kobashigawa JA
        • Aintablian TL
        • et al.
        Vasoplegia after heart transplantation: Outcomes at 1 year.
        Interact Cardiovasc Thorac Surg. 2017; 25: 212-217
        • Träger K
        • Fritzler D
        • Fischer G
        • et al.
        Treatment of post-cardiopulmonary bypass SIRS by hemoadsorption: A case series.
        Int J Artif Organs. 2016; 39: 141-146
        • Nemeth E
        • Kovacs E
        • Racz K
        • et al.
        Impact of intraoperative cytokine adsorption on outcome of patients undergoing orthotopic heart transplantation-an observational study.
        Clin Transplant. 2018; 32: e13211
        • Garau I
        • März A
        • Sehner S
        • et al.
        Hemadsorption during cardiopulmonary bypass reduces interleukin 8 and tumor necrosis factor α serum levels in cardiac surgery: A randomized controlled trial.
        Minerva Anestesiol. 2019; 85: 715-723
      2. ClinicalTrials.gov. Prevention of low blood pressure after cardiac surgery in heart failure patients with a filter called CytoSorb. (CytoSorb-HF). Available at: https://clinicaltrials.gov/ct2/show/NCT04812717. Accessed August 22, 2022.

        • Taddei S
        • Caraccio N
        • Virdis A
        • et al.
        Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: Beneficial effect of levothyroxine therapy.
        J Clin Endocrinol Metab. 2003; 88: 3731-3737
        • Mekontso-Dessap A
        • Houel R
        • Soustelle C
        • et al.
        Risk factors for post-cardiopulmonary bypass vasoplegia in patients with preserved left ventricular function.
        Ann Thorac Surg. 2001; 71: 1428-1432
        • Wan S
        • Marchant A
        • DeSmet JM
        • et al.
        Human cytokine responses to cardiac transplantation and coronary artery bypass grafting.
        J Thorac Cardiovasc Surg. 1996; 111: 469-477
        • Boyle Jr, EM
        • Pohlman TH
        • Johnson MC
        • et al.
        Endothelial cell injury in cardiovascular surgery: The systemic inflammatory response.
        Ann Thorac Surg. 1997; 63: 277-284
        • Strüber M
        • Cremer JT
        • Gohrbandt B
        • et al.
        Human cytokine responses to coronary artery bypass grafting with and without cardiopulmonary bypass.
        Ann Thorac Surg. 1996; 68: 1330-1335
        • Fransen E
        • Maessen J
        • Dentener M
        • et al.
        Impact of blood transfusions on inflammatory mediator release in patients undergoing cardiac surgery.
        Chest. 1999; 116: 1233-1239
        • Bozzetti G
        • Ranucci M
        • Grillone G.
        Concomitant pulmonary hypertension and vasoplegia syndrome after heart transplant: A challenging picture.
        J Cardiothorac Vasc Anesth. 2008; 22: 868-871
        • Weis F
        • Kilger E
        • Beiras-Fernandez A
        • et al.
        Association between vasopressor dependence and early outcome in patients after cardiac surgery.
        Anaesthesia. 2006; 61: 938-942
        • Guarracino F
        • Habicher M
        • Treskatsch S
        • et al.
        Vasopressor therapy in cardiac surgery-an experts' consensus statement.
        J Cardiothorac Vasc Anesth. 2021; 35: 1018-1029
      3. Par Pharmaceutical, Inc. Vasostrict prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/204485s011lbl.pdf. Revised March 2021. Accessed August 22, 2022.

        • Torgersen C
        • Dünser MW
        • Wenzel V
        • et al.
        Comparing two different arginine vasopressin doses in advanced vasodilatory shock: A randomized, controlled, open-label trial.
        Intensive Care Med. 2010; 36: 57-65
        • Jentzer JC
        • Coons JC
        • Link CB
        • et al.
        Pharmacotherapy update on the use of vasopressors and inotropes in the intensive care unit.
        J Cardiovasc Pharmacol Ther. 2015; 20: 249-260
        • Hajjar LA
        • Vincent JL
        • Barbosa Gomes Galas FR
        • et al.
        Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: The VANCS randomized controlled trial.
        Anesthesiology. 2017; 126: 85-93
        • Levy B
        • Fritz C
        • Tahon E
        • et al.
        Vasoplegia treatments: The past, the present, and the future.
        Crit Care. 2018; 22: 52
        • Price LC
        • Wort SJ
        • Finney SJ
        • et al.
        Pulmonary vascular and right ventricular dysfunction in adult critical care: Current and emerging options for management: A systematic literature review.
        Crit Care. 2010; 14: R169
        • Sarkar J
        • Golden PJ
        • Kajiura LN
        • et al.
        Vasopressin decreases pulmonary-to-systemic vascular resistance ratio in a porcine model of severe hemorrhagic shock.
        Shock. 2015; 43: 475-482
      4. Par Pharmaceutical, Inc. Vasostrict prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/204485s003lbl.pdf. Revised November 2015. Accessed August 22, 2022.

        • John JN
        • Luria MH.
        Studies in clinical shock and hypotension. II. Hemodynamic effects of norepinephrine and angiotensin.
        J Clin Invest. 1965; 44: 1494-1504
        • Belle MS
        • Jaffee RJ.
        The use of large doses of angiotensin in acute myocardial infarction with shock.
        J Lancet. 1965; 85: 193-194
        • Hall A
        • Busse LW
        • Ostermann M.
        Angiotensin in critical care.
        Crit Care. 2018; 22: 69
        • Carey RM
        • Wang ZQ
        • Siragy HM.
        Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function.
        Hypertension. 2000; 35: 155-163
        • Klijian A
        • Khanna AK
        • Reddy VS
        • et al.
        Treatment with angiotensin II Is associated with rapid blood pressure response and vasopressor sparing in patients with vasoplegia after cardiac surgery: A post-hoc analysis of angiotensin II for the treatment of high-output shock (ATHOS-3) study.
        J Cardiothorac Vasc Anesth. 2021; 35: 51-58
        • Park BK
        • Shim TS
        • Lim CM
        • et al.
        The effects of methylene blue on hemodynamic parameters and cytokine levels in refractory septic shock.
        Korean J Intern Med. 2005; 20: 123-128
        • Weiner MM
        • Lin HM
        • Danforth D
        • et al.
        Methylene blue is associated with poor outcomes in vasoplegic shock.
        J Cardiothorac Vasc Anesth. 2013; 27: 1233-1238
        • Ozal E
        • Kuralay E
        • Yildirim V
        • et al.
        Preoperative methylene blue administration in patients at high risk for vasoplegic syndrome during cardiac surgery.
        Ann Thorac Surg. 2005; 79: 1615-1619
        • Juffermans NP
        • Vervloet MG
        • Daemen-Gubbels CR
        • et al.
        A dose-finding study of methylene blue to inhibit nitric oxide actions in the hemodynamics of human septic shock.
        Nitric Oxide. 2010; 22: 275-280
        • Pasin L
        • Umbrello M
        • Greco T
        • et al.
        Methylene blue as a vasopressor: A meta-analysis of randomised trials.
        Crit Care Resusc. 2013; 215: 42-48
        • Sills MR
        • Zinkham WH.
        Methylene blue-induced Heinz body hemolytic anemia.
        Arch Pediatr Adolesc Med. 1994; 148: 306-310
        • Kellermeyer RW
        • Tarlov AR
        • BrewerR GJ
        • et al.
        Hemolytic effect of therapeutic drugs. Clinical considerations of the primaquine-type hemolysis.
        JAMA. 1962; 180: 388-394
        • Evora PR
        • Ribeiro PJ
        • Vicente WV
        • et al.
        Methylene blue for vasoplegic syndrome treatment in heart surgery: Fifteen years of questions, answers, doubts and certainties.
        Rev Bras Cir Cardiovasc. 2009; 24: 279-288
        • Ramsay RR
        • Dunford C
        • Gillman PK.
        Methylene blue and serotonin toxicity: Inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction.
        Br J Pharmacol. 2007; 152: 946-951
        • Gillman PK.
        CNS toxicity involving methylene blue: The exemplar for understanding and predicting drug interactions that precipitate serotonin toxicity.
        J Psychopharmacol. 2011; 25: 429-436
        • Evora PRB.
        Methylene blue, serotonergic syndrome, and heart transplant.
        J Thorac Cardiovasc Surg. 2013; 145: 897
        • Ludlow JT
        • Wilkerson RG
        • Nappe TM
        Methemoglobinemia.
        StatPearls. StatPearls Publishing, Treasure Island, FL2022 (Available at) (Accessed August 22)
      5. BTG International, Ltd. Cyanokit prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/022041lbl.pdf. Assessed February 22, 2022.

        • Legrand M
        • Michel T
        • Daudon M
        • et al.
        Risk of oxalate nephropathy with the use of cyanide antidote hydroxocobalamin in critically ill burn patients.
        Intensive Care Med. 2016; 42: 1080-1081
        • Roderique JD
        • VanDyck K
        • Holman B
        • et al.
        The use of high-dose hydroxocobalamin for vasoplegic syndrome.
        Ann Thorac Surg. 2014; 97: 1785-1786
        • Burnes ML
        • Boettcher BT
        • Woehlck HJ
        • et al.
        Hydroxocobalamin as a rescue treatment for refractory vasoplegic syndrome after prolonged cardiopulmonary bypass.
        J Cardiothorac Vasc Anesth. 2017; 31: 1012-1014
        • Lopez A
        • Lorente JA
        • Steingrub J
        • et al.
        Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock.
        Crit Care Med. 2004; 32: 21-30
        • Levine M
        • Rumsey SC
        • Daruwala R
        • et al.
        Criteria and recommendations for vitamin C intake.
        JAMA. 1999; 281: 1415-1423
        • Rudyk O
        • Phinikaridou A
        • Prysyazhna O
        • et al.
        Protein kinase G oxidation is a major cause of injury during sepsis.
        Proc Natl Acad Sci U S A. 2003; 110: 9909-9913
        • Parihar A
        • Parihar MS
        • Milner S
        • et al.
        Oxidative stress and anti-oxidative mobilization in burn injury.
        Burns. 2008; 34: 6-17
        • Wilson JX.
        Mechanism of action of vitamin C in sepsis: Ascorbate modulates redox signaling in endothelium.
        Biofactors. 2009; 35: 5-13
        • Han M
        • Pendem S
        • Teh SL
        • et al.
        Ascorbate protects endothelial barrier function during septic insult: Role of protein phosphatase type 2A.
        Free Radic Biol Med. 2010; 48: 128-135
        • Wieruszewski PM
        • Nei SD
        • Maltais S
        • et al.
        Vitamin C for vasoplegia after cardiopulmonary bypass: A case series.
        A A Pract. 2018; 11: 96-99
        • Annane D
        • Sébille V
        • Charpentier C
        • et al.
        Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock.
        JAMA. 2002; 288: 862-871
        • Prigent H
        • Maxime V
        • Annane D.
        Clinical review: Corticotherapy in sepsis.
        Crit Care. 2004; 8: 122-129
        • Sprung CL
        • Annane D
        • Keh D
        • et al.
        Hydrocortisone therapy for patients with septic shock.
        N Engl J Med. 2008; 358: 111-124
        • Hadoke PW
        • Macdonald L
        • Logie JJ
        • et al.
        Intravascular glucocorticoid metabolism as a modulator of vascular structure and function.
        Cell Mol Life Sci. 2006; 63: 565-578
        • Bellissant E
        • Annane D.
        Effect of hydrocortisone on phenylephrine—mean arterial pressure dose-response relationship in septic shock.
        Clin Pharmacol Ther. 2000; 68: 293-303
        • Radomski MW
        • Palmer RM
        • Moncada S.
        Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells.
        Proc Natl Acad Sci U S A. 1990; 87: 10043-10047
        • Marik PE
        • Khangoora V
        • Rivera R
        • et al.
        Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: A retrospective before-after study.
        Chest. 2017; 151: 1229-1238
        • Ibrahim M
        • Hendry P
        • Masters R
        • et al.
        Management of acute severe perioperative failure of cardiac allografts: A single-centre experience with a review of the literature.
        Can J Cardiol. 2007; 23: 363-367
        • Carmena MDGC
        • Bueno MG
        • Almenar L
        • et al.
        Primary graft failure after heart transplantation: Characteristics in a contemporary cohort and performance of the RADIAL risk score.
        J Heart Lung Transplant. 2013; 32: 1187-1195
        • Nicoara A
        • Ruffin D
        • Cooter M
        • et al.
        Primary graft dysfunction after heart transplantation: Incidence, trends, and associated risk factors.
        Am J Transplant. 2018; 18: 1461-1470
        • Listijono DR
        • Watson A
        • Pye R
        • et al.
        Usefulness of extracorporeal membrane oxygenation for early cardiac allograft dysfunction.
        J Heart Lung Transplant. 2011; 30: 783-789
        • Kobashigawa J
        • Zuckermann A
        • Macdonald P
        • et al.
        Report from a consensus conference on primary graft dysfunction after cardiac transplantation.
        J Heart Lung Transplant. 2014; 33: 327-340
        • Minev PA
        • El-Banayosy A
        • Minami K
        • et al.
        Differential indication for mechanical circulatory support following heart transplantation.
        Intensive Care Med. 2001; 27: 1321-1327
        • Kavarana MN
        • Sinha P
        • Naka Y
        • et al.
        Mechanical support for the failing cardiac allograft: A single-center experience.
        J Heart Lung Transplant. 2003; 22: 542-547
        • Taghavi S
        • Zuckermann A
        • Ankersmit J
        • et al.
        Extracorporeal membrane oxygenation is superior to right ventricular assist device for acute right ventricular failure after heart transplantation.
        Ann Thorac Surg. 2004; 78: 1644-1649
        • Marasco SF
        • Esmore DS
        • Negri J
        • et al.
        Early institution of mechanical support improves outcomes in primary cardiac allograft failure.
        J Heart Lung Transplant. 2005; 24: 2037-2042
        • Russo MJ
        • Chen JM
        • Sorabella RA
        • et al.
        The effect of ischemic time on survival after heart transplantation varies by donor age: An analysis of the United Network for Organ Sharing database.
        J Thorac Cardiovasc Surg. 2007; 133: 554-559
        • Marelli D
        • Laks H
        • Fazio D
        • et al.
        The use of donor hearts with left ventricular hypertrophy.
        J Heart Lung Transplant. 2000; 19: 496-503
        • Boengler K
        • Schulz R
        • Heusch G.
        Loss of cardioprotection with ageing.
        Cardiovasc Res. 2009; 83: 247-261
        • Santise G
        • D'Ancona G
        • Falletta C
        • et al.
        Donor pharmacological hemodynamic support is associated with primary graft failure in human heart transplantation.
        Interact Cardiovasc Thorac Surg. 2009; 9: 476-479
        • Yamani MH
        • Lauer MS
        • Starling RC
        • et al.
        Impact of donor spontaneous intracranial hemorrhage on outcome after heart transplantation.
        Am J Transplant. 2004; 4: 257-261
        • Gordon JK
        • McKinlay J.
        Physiological changes after brain stem death and management of the heart-beating donor.
        Contin Educ Anaesth Crit Care Pain. 2012; 12: 225-229
        • White CW
        • Messer SJ
        • Large SR
        • et al.
        Transplantation of hearts donated after circulatory death.
        Front Cardiovasc Med. 2018; 5: 8
        • White CW
        • Lillico R
        • Sandha J
        • et al.
        Physiologic changes in the heart following cessation of mechanical ventilation in a porcine model of donation after circulatory death: Implications for cardiac transplantation.
        Am J Transplant. 2016; 16: 783-793
        • Manara AR
        • Murphy PG
        • O'Callaghan G
        Donation after circulatory death.
        Br J Anaesth. 2012; 108: i108-i121
        • Halazun KJ
        • Al-Mukhtar A
        • Aldouri A
        • et al.
        Warm ischemia in transplantation: Search for a consensus definition.
        Transplant Proc. 2007; 39: 1329-1331
        • Page A
        • Messer S
        • Large SR.
        Heart transplantation from donation after circulatory determined death.
        Ann Cardiothorac Surg. 2018; 7: 75-81
        • Anaya-Prado R
        • Delgado-Vazquez JA.
        Scientific basis of organ preservation.
        Curr Opin Organ Transplant. 2008; 13: 129-134
        • Vigne P
        • Frelin C
        • Lazdunski M.
        The Na+/H+ exchanger in eukaryotic cells: Biochemical and pharmacological properties and physiological role.
        Biochimie. 1985; 67: 129-135
        • Karmazyn M
        • Gan XT
        • Humphreys RA
        • et al.
        The myocardial Na(+)-H(+) exchange: Structure, regulation, and its role in heart disease.
        Circ Res. 1999; 85: 777-786
        • Still S
        • Shaikh AF
        • Qin HY
        • et al.
        Reoperative sternotomy is associated with primary graft dysfunction following heart transplantation.
        Interact Cardiovasc Thorac Surg. 2018; 27: 343-349
        • Awad M
        • Czer LS
        • Mirocha J
        • et al.
        Prior sternotomy increases the mortality and morbidity of adult heart transplantation.
        Transplant Proc. 2015; 47: 485-497
        • Kansara P
        • Czer L
        • Awad M
        • et al.
        Heart transplantation with and without prior sternotomy: Analysis of the United Network for Organ Sharing database.
        Transplant Proc. 2014; 46: 249-255
        • Russo MJ
        • Iribarne A
        • Hong KN
        • et al.
        Factors associated with primary graft failure after heart transplantation.
        Transplantation. 2010; 90: 444-450
        • Hong KN
        • Iribarne A
        • Worku B
        • et al.
        Who is the high-risk recipient? Predicting mortality after heart transplant using pretransplant donor and recipient risk factors.
        Ann Thorac Surg. 2011; 92: 520-527
        • Young JB
        • Hauptman PJ
        • Naftel DC
        • et al.
        Determinants of early graft failure following cardiac transplantation, a 10-year, multi-institutional, multivariable analysis.
        J Heart Lung Transplant. 2001; 20: 212
        • Truby LK
        • Takeda K
        • Topkara VK
        • et al.
        Risk of severe primary graft dysfunction in patients bridged to heart transplantation with continuous-flow left ventricular assist devices.
        J Heart Lung Transplant. 2018; 37: 1433-1442
        • Wright M
        • Takeda K
        • Mauro C
        • et al.
        Dose-dependent association between amiodarone and severe primary graft dysfunction in orthotopic heart transplantation.
        J Heart Lung Transplant. 2017; 36: 1226-1233
        • Chin C
        • Feindel C
        • Cheng D.
        Duration of preoperative amiodarone treatment may be associated with postoperative hospital mortality in patients undergoing heart transplantation.
        J Cardiothorac Vasc Anesth. 1999; 13: 562-566
        • Khush KK
        • Cherikh WS
        • Chambers DC
        • et al.
        The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty sixth adult heart transplantation report - 2019; focus theme: Donor and recipient size match.
        J Heart Lung Transplant. 2019; 38: 1056-1066
        • Briasoulis A
        • Inampudi C
        • Pala M
        • et al.
        Induction immunosuppressive therapy in cardiac transplantation: A systematic review and meta-analysis.
        Heart Fail Rev. 2018; 23: 641-649
        • Chou NK
        • Wang SS
        • Chen YS
        • et al.
        Induction immunosuppression with basiliximab in heart transplantation.
        Transplant Proc. 2008; 40: 2623
        • Czer LS
        • Phan A
        • Ruzza A
        • et al.
        Antithymocyte globulin induction therapy adjusted for immunologic risk after heart transplantation.
        Transplant Proc. 2013; 45: 2393-2398
        • Mattei MF
        • Redonnet M
        • Gandjbakhch I
        • et al.
        Lower risk of infectious deaths in cardiac transplant patients receiving basiliximab versus anti-thymocyte globulin as induction therapy.
        J Heart Lung Transplant. 2007; 26: 693-699
        • Penninga L
        • Møller CH
        • Gustafsson F
        • et al.
        Immunosuppressive T-cell antibody induction for heart transplant recipients.
        Cochrane Database Syst Rev. 2013; CD008842
        • Tzani A
        • Van den Eynde J
        • Doulamis IP
        • et al.
        Impact of induction therapy on outcomes after heart transplantation.
        Clin Transplant. 2021; 35: e14440
        • Ansari D
        • Lund LH
        • Stehlik J
        • et al.
        Induction with anti-thymocyte globulin in heart transplantation is associated with better long-term survival compared with basiliximab.
        J Heart Lung Transplant. 2015; 34: 1283-1291
        • Kapic E
        • Becic F
        • Kusturica J.
        Basiliximab, mechanism of action and pharmacological properties.
        Med Arh. 2004; 58: 373-376
        • Liu J
        • Farmer Jr, JD
        • Lane WS
        • et al.
        Calcineurin is a common target of cyclophilin cyclosporin A and FKBP-FK506 complexes.
        Cell. 1991; 66: 807-815
        • Jain J
        • McCaffrey PG
        • Miner Z
        • et al.
        The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun.
        Nature. 1993; 365: 352-355
        • Peters DH
        • Fitton A
        • Plosker GL
        • et al.
        Tacrolimus. A review of its pharmacology, and therapeutic potential in hepatic and renal transplantation.
        Drugs. 1993; 46: 746-794
        • Noble S
        • Markham A
        Cyclosporin. A review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (Neoral).
        Drugs. 1995; 50: 924-941
        • Wiseman AC.
        Immunosuppressive medications.
        Clin J Am Soc Nephrol. 2016; 11: 332-343
        • Rosenberg PB
        • Vriesendorp AE
        • Drazner MH
        • et al.
        Induction therapy with basiliximab allows delayed initiation of cyclosporine and preserves renal function after cardiac transplantation.
        J Heart Lung Transplant. 2005; 24: 1327
        • Cantarovich M
        • Giannetti N
        • Barkun J
        • et al.
        Antithymocyte globulin induction allows a prolonged delay in the initiation of cyclosporine in heart transplant patients with postoperative renal dysfunction.
        Transplantation. 2004; 78: 779
        • Delzer LM
        • Golightly LK
        • Kiser TH
        • et al.
        Calcineurin inhibitor and nonsteroidal anti-inflammatory drug interaction: Implications of changes in renal function associated with concurrent use.
        J Clin Pharmacol. 2018; 58: 1443-1451
        • Kahan BD
        • Gibbons S
        • Tejpal N
        • et al.
        Synergistic interactions of cyclosporine and rapamycin to inhibit immune performances of normal human peripheral blood lymphocytes in vitro.
        Transplantation. 1991; 51: 232-239
        • Asleh R
        • Briasoulis A
        • Kremers WK
        • et al.
        Long-term sirolimus for primary immunosuppression in heart transplant recipients.
        J Am Coll Cardiol. 2018; 71: 636-650
        • Thomson AW
        • Bonham C A
        • Zeevi A.
        Mode of action of tacrolimus (FK506): Molecular and cellular mechanisms.
        Ther Drug Monit. 1995; 17: 584-591
        • Vincent SH
        • Karanam BV
        • Painter SK
        • et al.
        In vitro metabolism of FK-506 in rat, rabbit, and human liver microsomes: Identification of a major metabolite and of cytochrome P450 3A as the major enzymes responsible for its metabolism.
        Arch Biochem Biophys. 1992; 294: 454-460
        • Lemahieu WP
        • Maes BD
        • Verbeke K
        • et al.
        Impact of gastric acid suppressants on cytochrome P450 3A4 and P-glycoprotein: Consequences for FK506 assimilation.
        Kidney Int. 2005; 67: 1152-1160
        • Sands M
        • Brown RB.
        Interactions of cyclosporine with antimicrobial agents.
        Rev Infect Dis. 1989; 11: 691-697
        • Seifeldin R.
        Drug interactions in transplantation.
        Clin Ther. 1995; 17: 1043-1061
        • Bhagat V
        • Pandit RA
        • Ambapurkar S
        • et al.
        Drug Interactions between Antimicrobial and Immunosuppressive Agents in solid organ transplant recipients.
        Indian J Crit Care Med. 2021; 25: 67-76
        • Frassetto L
        • Thai T
        • Aggarwal AM
        • et al.
        Pharmacokinetic interactions between cyclosporine and protease inhibitors in HIV+ subjects.
        Drug Metab Pharmacokinet. 2003; 18: 114-120
      6. Novartis Pharmaceuticals Corporation. Neoral prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/050715s035,050716s038lbl.pdf. Accessed August 22, 2022.

      7. Astellas Pharma Inc. Astagraf XL prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204096s002lbl.pdf. Accessed August 22, 2022.

        • Chowbay B
        • Cumaraswamy S
        • Cheung YB
        • et al.
        Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients.
        Pharmacogenetics. 2003; 13: 89-95
        • Haufroid V
        • Mourad M
        • Van KV
        • et al.
        The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients.
        Pharmacogenetics. 2004; 14: 147-154
        • Bonhomme-Faivre L
        • Devocelle A
        • et al.
        MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in l:iver-transplant recipients.
        Transplantation. 2004; 78: 21-25
        • Bai S
        • Brunner LJ
        • Stepkowski SM
        • et al.
        Effect of low dose cyclosporine and sirolimus on hepatic drug metabolism in the rat1.
        Transplantation. 2001; 71: 1585-1592
        • Le MY
        • Djebli N
        • Szelag JC
        • et al.
        CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients.
        Clin Pharmacol Ther. 2006; 80: 51-60
        • Borrows R
        • Chusney G
        • Loucaidou M
        • et al.
        The magnitude and time course of changes in mycophenolic acid 12-hour predose levels during antibiotic therapy in mycophenolate mofetil based renal transplantation.
        Ther Drug Monit. 2007; 29: 122-126
        • Johnston O
        • Rose CL
        • Webster AC
        • et al.
        Sirolimus is associated with new-onset diabetes in kidney transplant recipients.
        J Am Soc Nephrol. 2008; 19: 1411-1418
        • Kaplan B
        • Qazi Y
        • Wellen JR.
        Strategies for the management of adverse events associated with mTOR inhibitors.
        Transplant Rev. 2014; 28: 126-133
        • Pallet N
        • Legendre C.
        Adverse events associated with mTOR inhibitors.
        Expert Opin Drug Saf. 2013; 12: 177-186
        • Ventura-Aguiar P
        • Campistol JM
        • Diekmann F.
        Safety of mTOR inhibitors in adult solid organ transplantation.
        Expert Opin Drug Saf. 2016; 15: 303-319
        • Rhen T
        • Cidlowski JA.
        Antiinflammatory action of glucocorticoids—new mechanisms for old drugs.
        N Engl J Med. 2005; 353: 1711-1723
        • Goodwin W
        • Kaufman J
        • Mims M
        • et al.
        Human renal transplantation, I: Clinical experiences with six cases of renal homotransplantation.
        J Urol. 1963; 89: 13-24
        • Colvin MM
        • Cook JL
        • Chang PP
        • et al.
        Sensitization in heart transplantation: Emerging knowledge: A scientific statement from the American Heart Association.
        Circulation. 2019; 139: e553-e578
        • Delgado JF
        • Reyne AG
        • de Dios S
        • et al.
        Influence of cytomegalovirus infection in the development of cardiac allograft vasculopathy after heart transplantation.
        J Heart Lung Transplant. 2015; 34: 1112-1119
        • Carrier M
        • Pelletier GB
        • Cartier R
        • et al.
        Prevention of herpes simplex virus infection by oral acyclovir after cardiac transplantation.
        Can J Surg. 1992; 35: 513-516
        • Doesch AO
        • Repp J
        • Hofmann N
        • et al.
        Effects of oral valganciclovir prophylaxis for cytomegalovirus infection in heart transplant patients.
        Drug Des Devel Ther. 2012; 6: 289-295
      8. Genentech, Inc. Valcyte prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021304s008%2C022257s003lbl.pdf. Accessed August 22, 2022.

        • Eriksson M
        • Jokinen JJ
        • Söderlund S
        • et al.
        Low-dose valganciclovir prohylaxis is efficacious and safe in cytomegalovirus seropositive heart transplant recipients with anti-thymocyte globulin.
        Transpl Infect Dis. 2018; 20: e12868
        • Huang G
        • Davis MR
        • Beaird OE
        • et al.
        1109. Valgancyclovir dosing for cytomegalovirus prophylaxis in heart transplant recipients.
        Open Forum Infect Dis. 2020; 7: S584-S585
      9. Genentech, Inc. Cytovene-IV prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/019661s036lbl.pdf. Accessed August 22, 2022.

        • Derouin F
        • Pelloux H
        • Study ESCMID
        Group on Clinical Parasitology. Prevention of toxoplasmosis in transplant patients.
        Clin Microbiol Infect. 2008; 14: 1089-1101
      10. AR Scientific, Inc. BactrimTM prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/017377s068s073lbl.pdf. Accessed August 22, 2022.

        • Cardenal R
        • Medrano F
        • Varela J
        • et al.
        Pneumocystis carinii pneumonia in heart transplant recipients.
        Eur J Cardiothorac Surg. 2001; 20: 799-802
        • Montoya J
        • Giraldo L
        • Efron B
        • et al.
        Infectious complications among 620 consecutive heart transplant patients at Stanford University Medical Center.
        Clin Infect Dis. 2001; 33: 629-640
        • Cisneros JM
        • Munoz P
        • Torre-Cisneros J
        • et al.
        Pneumonia after heart transplantation: A multi-institutional study. Spanish Transplantation Infection Study Group.
        Clin Infect Dis. 1998; 27: 324-331
        • Green H
        • Paul M
        • Vidal L
        • et al.
        Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients.
        Cochrane Database Syst Rev. 2007; 3CD005590
        • Colvin MM
        • Cook JL
        • Chang P
        • et al.
        Antibody-mediated rejection in cardiac transplantation: Emerging knowledge in diagnosis and management: A scientific statement from the American Heart Association.
        Circulation. 2015; 131: 1608-1639
        • Ho EK
        • Vlad G
        • Colovai AI
        • et al.
        Alloantibodies in heart transplantation.
        Hum Immunol. 2009; 70: 825-829
        • Michaels P
        • Espejo M
        • Kobashigawa J
        • et al.
        Humoral rejection in cardiac transplantation: Risk factors, hemodynamic consequences and relationship to transplant coronary artery disease.
        J Heart Lung Transplant. 2003; 22: 58-69
        • Reed EF
        • Demetris AJ
        • Hammond E
        • et al.
        Antibody-Mediated Rejection in Cardiac Transplantation: Emerging Knowledge in Diagnosis and Management. A Scientific Statement From the American Heart Association.
        J Heart Lung Transplant. 2006; 25: 153-159
        • Bray RB
        • Harris SB
        • Josephson CD
        • et al.
        Unappreciated risk factors for transplant patients: HLA antibodies in blood components.
        Hum Immunol. 2004; 65: 240-244